Lesson 12 - Emerging Technologies
3. Emerging Technologies: Virtual and Augmented Reality
3.4. Designing Immersive Educational Environments
This technology is so recent that there are few or no accepted best practices developed yet for educational use. Most educational applications to date have been deliberately exploratory in nature. However, there are several stages of development required that will apply to all educational applications of these technologies:
- Identify start-up costs and possible sources of funding: this is not likely to be a cheap exercise, at least initially; for this reason, several universities, such as the University of British Columbia, and Drexel University, have set up their own emerging technologies research labs to experiment with educational applications;
- Define learning outcomes/objectives: what is the learner expected to learn? In the early stages of development, this may be both a brainstorming exercise (preferably including students/end-users) and an iterative process, because the full potential of the technology is not always clear in the first applications. In particular, the instructor needs to have a clear vision of what might be possible using an immersive technology. Thus some familiarity with the technology is essential before starting design;
- Determine where the use of this technology fits within the overall design of a course/program: in other words, what knowledge and skills will be developed within the immersive environment, and how does this integrate with what is being taught in the rest of the course/program?
- Decide between using an existing immersive design/learning environment that can be applied or adapted relatively easily for ‘local’ use; or designing a new immersive environment from scratch. The latter is obviously more expensive and time-consuming and will require a high level of expertise; as a result the pay-off from design from scratch (improved learning outcomes/return on investment) needs to be worth the effort;
- Choice of appropriate/affordable technology. Headsets or mobile apps are the least expensive part of the use of immersive technologies. The main cost will be in developing or adapting the ‘augmented’ or ‘virtual’ world. However, as with serious games, there can be an intermediary step, where an existing ‘world’ can be licensed and adapted for local use (see, for instance, lightwave). In some cases, open access immersive worlds are available for use or adaptation, although they are not common (see opensimulator, art of illusion, or mayaverse, for examples.). Often students can be used to help with programming and design of the environment, as part of their studies, but they will need direction as well as the opportunity to offer creative ideas. Truly interactive virtual worlds where learners/users make decisions and the consequences are ‘programmed’ into the learning environment may require large amounts of computing capacity, such as cloud computing;
· To be effective, the VR environment has to be as authentic or realistic as possible. This means paying as much attention to creating the specific learning context. It will be necessary to decide what parts of the learning will best be done outside the VR/AR experience, and which inside. For instance, the procedures for monitoring the state of a nuclear reactor, for identifying critical incidents, for deciding whether or not or when to shut down the reactor, and for actually shutting down the reactor must also be built into the learning process. Most of this may be taught outside the VR context, but VR can be used to test or develop the skills of applying this knowledge in a realistic, challenging context. In other words, the VR experience needs to be embedded within a broader learning context or environment;
- Testing and adaptation: Design, at least initially, needs to be an iterative process, where ideas are developed and tried, and feedback received and incorporated into the design;
- Assessment: This can be a particular challenge, particularly if new learning outcomes result from the experience. How can assessment best capture what students have learned? Will assessment take place within the ‘virtual’ world, in the real world, or in some other way (and if so, how authentic will such an assessment be)?
- In what ways could the new immersive environment be scaled up to enable costs to be recovered?
- Evaluation: What is the best way to evaluate the success or limitations of the design and application of the immersive world? How best to disseminate the knowledge and experience gained?
These may appear formidable challenges, but the potential benefits could be considerable.
The development of fully immersive technologies is so recent that it is premature to try to identify all the educational affordances that are unique to this medium. New applications are being explored all the time. Most of the evidence is qualitative, based on people’s personal experience of using the technology. Empirical evidence that validates specific educational affordances of VR/AR in terms of improved learning outcomes is currently lacking. However, the potential of VR/AR in terms of assisting learning can be identified.
First of all, many of the affordances or educational characteristics of other media, and in particular video, will apply to VR and AR, but often more intensely, because of the immersive experience.
Virtual and augmented reality applications can provide students with a deep, intuitive understanding of phenomena that are otherwise difficult if not impossible to achieve in other ways. This enables students who often struggle with the abstract nature of an academic subject to understand in more concrete terms what the abstractions mean or represent. This intuitive understanding is critical not only for deeper understanding but also for breakthroughs in research and applications of science.
Educational applications where the cost of alternative or traditional ways of learning are too expensive or too dangerous will be particularly suitable for virtual reality applications. Examples might be emergency management, such as shutting down an out-of-control nuclear reactor, or defusing a bomb, or managing a fire on an oil tanker, or exploring inside the physical structure of a human brain. In particular, VR would be appropriate for learning in contexts where real environments are not easily accessible, or where learners need to cope with strong emotions when making decisions or operating under pressure in real-time.
AR, which is often easier to design and implement, enables learners to practice applications of knowledge in semi-realistic contexts.
However, at the time of writing, we are just beginning to understand the potential of this medium. Over time, the educational affordances of this medium will become much clearer.