
UNIT 2: INTERNET OF THINGS

OVERVIEW

IoT, Internet of Things is the term used to represent how “things” can be interconnected to the

Internet to communicate and automate different processes. For example, think of a fridge that

can detect the levels of products, and notify owner on the way back to home, to order them

directly from the supermarket, and owner just need to drive through to pick up products. Other

examples include, home automation, environmental monitoring, and so on.

LEARNING OUTCOMES

By the end of this unit, you should be able to do the following:

1. Identify the Components that forms part of IoT Architecture

2. Determine the most appropriate IoT Devices and Sensors based on Case Studies.

3. Setup the connections between the Devices and Sensors.

4. Evaluate the appropriate protocol for communication between IoT

5. Analyse the communication protocols for IoT

TOPIC 1: IoT ARCHITECTURES

Introduction

Among the range of new emerging technologies, Internet of Things is perhaps the one that is

going to have the greatest impact in terms of adoption, ubiquitous and pervasiveness. This

statement might seem far fetch, but the interconnection of “Things” and the Internet unlocks a

vast range of unimaginable applications, ranging from Agriculture, Environment, Gaming, up

to Zoology. To facilitate the emergence of those applications, it is necessary to have a well-

structured IoT architecture for the implementation of IoT-based solution.

Requirements for IoT Architecture

IoT Architecture a set of standards and layers that will group requirements of different devices,

actuators and protocols. In order to pave the way for fascinating IoT Applications, the IoT

Architecture needs to consist of the following:

 Distributed open architecture with end to end characteristics, interoperability of

heterogeneous systems, neutral access, clear layering and resilience to physical network

disruption.

 Decentralized autonomic architectures based on peering of nodes.

 Architectures moving intelligence at edge of the networks, up to users’ terminals and

things.

 Cloud computing technology, event-driven architectures, disconnected operations and

synchronization.

 Use of market mechanisms for increased competition and participation.

Extracted from: Sundmaeker, 2010

IoT Models

To be able to come up with a well-structured IoT architecture, the first step would be to review

the existing IoT reference architectures proposed by different organisations as follows:

 The Industrial Internet Consortium has delivered the Industrial Internet Reference

Architecture (IIRA), with a strong industry focus specifically on industrial IoT

applications (Shi-Wan et al., 2017).

 The Internet of Things IoT-A EU initiative delivered a detailed architecture and model

from the functional and information perspectives (Carrez, 2017).

 The Reference Architecture Model Industrie 4.0 (RAMI 4.0) goes beyond IoT, adding

manufacturing and logistics details. This is effectively a reference architecture for smart

factories dedicated to IoT standards that started in Germany (Platform-i40.de, 2018).

 The IEEE P2413 project formed a working group dedicated to the IoT’s architectural

framework, highlighting protection, security, privacy and safety issues (Soo, 2016).

https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://www.meet-iot.eu/deliverables-IOTA/D1_5.pdf
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf?__blob=publicationFile&v=4
http://standards.ieee.org/develop/project/2413.html

The common feature that can be derived from all the architectures mentioned above, is that

they have well-defined boundaries for different activities clustered into layers, which shows

how important aspects of the overall system operates and interacts among themselves. The

layers can be adopted by different technologies, components, brands and so on.

Conceptually, the layers can be identified as the following layers:

1. Physical devices: The “things” in the IoT

2. The gateway: A border module to link resource-limited devices

3. Integration: A protocol to allow communication between nodes and servers

4. Applications: Data processing and analytics, for example

Figure 1 – IoT Architecture (Walter, 2017)

Layer 1 – Physical Layer (Device Layer)

In this layer, devices such as sensors are used to capture parameters about the environment and

to convert those into signals. Also in this layer, actuators are being used for the process of

automation to perform any mechanical processes. Communication between the devices and

servers can happen in two ways.

1. Either each device communicate directly to the servers using protocols such as REST,

MQQT, XMPP or AMQP (explained in next topic);

2. Or they communicate indirectly through a gateway. This will allow devices to just

capture parameters and send them to the gateway through short-range communication

protocols like Zigbee, Bluetooth and RF. The gateway would then combine the received

the messages and transmit to the required server.

Layer 2 – Gateway Layer

In this layer, gathering of data from various devices is the main requirement. It performs

translation of various messages received from heterogeneous devices and sends the leverage

data using protocols mentioned above. Apart from doing the receiving and sending of data, it

can also provide services like data filtering, cleanup, aggregation and packet content inspection.

Layer 3 - Integration Layer

Most of the time this layer is hosted in the cloud; however it could also be a dedicated server.

This layer would be responsible for the collection of data from the gateways and storing in such

way that they can be queried and processed. That is why the cloud is the preferred host as they

also provided data redundancy. Examples are Apache Kafka, ThinkSpeed, Microsoft Azure

(IoT).

Layer 4 - Application Layer

Finally, the Application Layer is responsible for the presenting the data collected, processed

and labelled in such a way that it hides the complexities and is more inductive to users. In this

layer, the data can be further enriched by applying machine learning algorithms and predictions

can be made and presented to users. Presentation of final results can be through website or

mobile apps. Examples of such platforms are IBM’s Bluemix, Apache Spark, and so on.

TOPIC 2 - IoT COMMUNICATION AND PROTOCOLS

Introduction

Internet of Things encompasses a large range of applications (Agriculture, Smart Home, Smart

Town, Smart Bus, Environment Monitoring, etc) that scale from one controlled device up to

colossal amount of cross-platform distributions of different implanted technologies all

connected together and in real-time through cloud systems. Making all those different devices

talk to each other, and retrieving meaning information have led to the emergence of different

communication protocols at each layer of the communication protocol stack.

IoT Networking

The actual TCP/IP networking model has 4 layers with protocols defined at each layer.

However since IoT has its own specificity, different protocols have emerged at each layer to

suit it. They are presented in Figure 2 below.

Figure 2 – IoT and TCP/IP

Layer 1 (Link Layer) – concerns the infrastructure of the network. While current networking

infrastructure uses mainly Wired or Wireless networking, IoT infrastructure uses a variety of

technologies including:

1. WiFi – (Wireless Fidelity), latest version can cover up to 400m and can provide

bandwidth up to about 1 Gbps.

2. Bluetooth – can have a data rate up to 3 Mbps and maximum range of 100m.

3. ZigBee – works in the 2.4 GHz with a data rate of 250 Kbps and up to 200m or range.

It also supports AES encryption.

4. WiMax – can cover large area up to 50 km (fix device) and 15 km (mobile device) and

can provide a bandwidth up to 40 Mbps.

5. Cellular (2G/3G/4G) – provide worldwide coverage and varying bandwidth. However

operational costs are higher.

6. Others (less popular) include WirelessHart, DigiMesh, NFC, ANT, LoRaWAN, …

Layers 2 and 3 (Network and Transport Layer) - look at the communication protocols which

includes routing (choosing optimal path) and providing reliability (retransmission). Some

existing protocols are being used, while some new ones have also seen the day.

1. IPv6 is the upgraded version of IPv4, which could not cope with boom of ip addresses

demand. IPv6 can provide 1 IP address per cm2. It also has other features such as

encryption and simple header (less overhead).

2. 6LoWPAN is the acronym of IPv6 over Low power Wireless Personal Area Networks.

“It is an adaption layer for IPv6 over IEEE802.15.4 links. This protocol operates only

in the 2.4 GHz frequency range with 250 kbps transfer rate" (Postscapes.com, 2017).

3. UDP (User Datagram Protocol) is used an as alternative to TCP (reliable delivery), that

provides performance tuned for real-time applications. However UDP does not provide

reliability; therefore this aspect has to be addressed in higher level protocols.

4. Others include QUIC, Aeron, DTLS, NanoIP, CCN and TSMP.

Layer 4 (Application Layer) – concerns the data protocols, that is, specific for the application

it is meant for. In this layer, the predominant protocol is HTTP (HyperText Transfer Protocol),

which is still used by a lot of IoT Systems. However, some new protocols have also been

implemented.

1. HTTP – mainly designed for web browsers, it also important for IoT as it supports the

REST API which is becoming the main mechanism for Web Applications and services

to communicate. However HTTP comes with a lot of overhead.

2. MQQT - (Message Queuing Telemetry Transport) "The MQTT protocol enables a

publish/subscribe messaging model in an extremely lightweight way. It is useful for

connections with remote locations where a small code footprint is required and/or

network bandwidth is at a premium" (Postscapes.com, 2017).

3. AMQP - (Advanced Message Queuing Protocol) uses TCP/IP and publishes subscribe

model and Point to Point.

4. COAP - (Constrained Application Protocol) "is an application layer protocol that is

intended for use in resource-constrained internet devices, such as WSN nodes. CoAP

is designed to easily translate to HTTP for simplified integration with the web, while

also meeting specialized requirements such as multicast support, very low overhead,

and simplicity” (Postscapes.com, 2017).

5. Others include SMCP, XMPP, DDS, LLAP, Web Sockets and SOAP.

TOPIC 3: ASSEMBLY OF IoT DEVICE (HARDWARE PART)

Case Study 1: Blinking Led

In this case study, we are going to test the hardware setup by writing a simple sketch (Arduino

program) to blink a led and upload that program to the Arduino hardware.

Pre-requirements:

i. Hardware

 Arduino Uno

 LEDs

 USB cable

 Jumper wires

 Resistors

 Breadboard

Availability for purchase at https://store.arduino.cc/arduino-uno-smd-rev3 or other authorised

distributors

ii. Software:

 Arduino IDE which can be downloaded at https://www.arduino.cc/en/Main/Software.

For this module, we are going to use the Zip file for Windows which does not require

administrator rights for installation.

For an overview of the Arduino hardware, refer to the YouTube video

https://www.youtube.com/watch?v=M2aPcvANOc4 courtesy of Programming Electronics

Academy

Arduino Programming reference available at: https://www.arduino.cc/reference/en/

Setting up The Hardware

You will need the Arduino Uno, the USB A to B cable to connect the Arduino to your

PC/Laptop, a breadboard, jumper wires, a LED and a 330 Ohm resistor as shown in Figure 3.

https://store.arduino.cc/arduino-uno-smd-rev3
https://www.arduino.cc/en/Main/Software
https://www.youtube.com/watch?v=M2aPcvANOc4
https://www.arduino.cc/reference/en/

Figure 3

Note: All LEDs have a polarity, that is a positive pin called Anode (the side with the longer

pin) and a negative pin called Cathode (the side with the shorter pin) as shown in Figure 4

below:

USB Cable
Arduino Uno

Bread Board
Jumper wires LED 330 Ω resistor

Figure 4

Connect the anode of the LED to the 330 ohm resistor (the side with the longer pin) and then

use jumper wires to connect to the digital pin 13 (also called the led built-in) on the Arduino.

Connect the cathode of the LED to a jumper wire and connect the other part of the wire to the

ground (GND) pin.

Then connect the USB port (side-B) to the Arduino board and the other port to your laptop/pc.

Figure 5

Anode Cathode

+
-

Anode Cathode

+
-

Figure 6

The hardware has been setup, but to achieve blinking on the LED, instructions have to be

provided to the Arduino. This is where the Arduino IDE comes into play.

Extract the zipped Arduino IDE to your hard drive as shown in Figure 7.

Figure 7

Open the location where you have unzipped the archive and open the Arduino.exe. This will

load the IDE as shown in Figure 8.

Figure 8

Before writing the sketch, it is important to make sure that the hardware is connected to the

IDE so that the IDE can upload/update programmes on the hardware.

From the menu bar:

Connection setup between laptop/pc to Arduino device

i. Select type of hardware: Tools Board Arduino/Genuino Uno.

ii. Select communication port: Tools Port Select port detected by your OS.

Note: If at this point, no port is detected, disconnect hardware and close IDE. Connect hardware

(wait for it to be detected) and open IDE again.

Once the connection has been established, you will see the IDE showing the connected

hardware and port in the status bar as shown in Figure 8.

Editor

Message bar

Menu bar

Console

Status bar

Next step is to write the code to make the LED blink and upload it to the Arduino hardware.

The Editor provides two predefined functions namely setup() and loop(). Code used to

initialise the Arduino will be placed in the setup() method since this function executes only

once. The loop() function as its name suggest will execute the code block inside it over and

over.

To make the LED blink, we need to send power to it for a certain lapse of time (e.g., 1 second)

so that it lights up and then stop the current to turn it off for a certain time (e.g., 0.5 seconds).

Repeating this process will cause the blinking effect. This can be summarised according to the

pseudo-code below:

BEGIN

INITIALISE

 SET digital pin (13) as OUTPUT

REPEAT

 Send HIGH voltage for 1 second to the pin used as output (to light LED)

 Send LOW voltage for 0.5 second to the pin used as output (to turn off LED)

END-REPEAT

END

The initialisation part of the pseudocode will go in the setup() function whereas the repeating

part will be written in the loop() function of the sketch as shown in the figure below

Figure 9

To compile and upload the code, click on the and respectively.

The Arduino Language Reference (ALR) available at

https://www.arduino.cc/reference/en/#functions explains the purpose of the different functions

such as pinMode(), digitalWrite(), etc., and arguments such as LED_BUILTIN, HIGH, etc.,

used in the sketch above.

Please make extensive use of the ALR to learn new functions and write more complex sketches.

Compile Upload

https://www.arduino.cc/reference/en/#functions

Case Study 2: Getting Temperature Values on Demand (Button Press)

In this case study, we are going to program an IoT device which will read a temperature sensor

(LM35) and output the value of the temperature when the user presses on a push button.

Pre-requirements:

i. Hardware

 Arduino Uno

 Push button

 LM35 temperature sensor

 USB cable

 Jumper wires

 Resistor 10k Ohm

 Breadboard

ii. Software:

 Arduino IDE which can be downloaded at https://www.arduino.cc/en/Main/Software.

 123D circuit, this software allow use to simulate the circuit

(https://www.tinkercad.com)

I. Designing circuit

Use 123D Circuit site to create a model of your circuit as shown in Figure 10:

https://www.arduino.cc/en/Main/Software
https://www.tinkercad.com/things/0TPbLGXdKB1-start-simulating/editel?collectionid=OIYJ88OJ3OPN3EA&lessonid=EHD2303J3YPUS5Z&magic=fd0055a1f21f126cf57f1c806e7b3eb2f9600803&projectid=OIYJ88OJ3OPN3EA&t=1527010056119950444&tenant=circuits#/lesson-viewer

Figure 10

II. Setting up the IoT hardware

You will need the Arduino Uno, the USB A to B cable to connect the Arduino to your

PC/Laptop, Temperature sensor LM35, Jumper cables, 10k Ohm resistor, a push button and a

breadboard.

Figure 11

Arduino Uno

Temperature

Sensor LM35

Jumper wire

Bread Board
USB Cable

Resistor

Push button

Factsheet about LM35 Temperature Sensor:

Temperature sensor pinout:

Figure 12

Facing the flat part of the sensor, the pins are labelled as shown in Figure 12 above. The sensor

is connected as follows:

- The positive pin is connected to the positive 5v;

- The negative is connected to the ground and the signal pin is connected to the analog

pin A0 of the Arduino.

The sensor and push button will be linked to the Arduino by jumper wires which are connected

to the breadboard as shown in Figures 13 & 14 below.

Additional details:

Push button (connection to Arduino through jumper wires):

The top left pin connects to the 10k Ohm resistor which will in turn connects to the ground pin.

The top right pin connects to the 3.3 volt pin while the bottom left pin connects to the digital

pin 2 of the Arduino.

Ground
Data V+ (5v)

LM35

V+ (5v) Ground

Data

LM35 Temperature sensor (connection to Arduino through jumper wires):

The anode (+ve pin) of the temperature sensor connects to the 3.3 volt pin of the Arduino,

while the data pin connects to analog pin A0 and the ground pin of the sensor connects to the

ground pin of the Arduino.

Figure 13: Top view

Figure 14: Side view

Next step is to write the program to calculate and display the temperature value from the LM35

sensor when the push button is pushed. Note that the sensor only sends electrical signal to the

Arduino. The sketch will have to interpret these values and return the equivalent in degrees

Celsius. For that purpose, we are going to use a formula to convert the electrical values to

temperature values.

This can be summarised according to the pseudo code below

BEGIN

INITIALISE

 SET digital pin2 as INPUT

REPEAT

 Read value from pin2

 Check if button is pushed.

 If True

 Apply formula to convert readings to degrees Celsius

 Send data to Serial port

 Display data on serial monitor

 Else

 Do nothing

 End if

END-REPEAT

END

The sketch resulting from the above pseudocode is shown below:

float resolution=3.3/1023; // 3.3 is the supply volt & 1023 is max analog read value

const int buttonPin = 2; // the number of the pushbutton pin

int buttonState = 0;

void setup(){

 // initialize the pushbutton pin as an input:

 pinMode(buttonPin, INPUT);

 Serial.begin(9600);

}

void loop(){

 // read the state of the pushbutton value:

 buttonState = digitalRead(buttonPin);

if (buttonState == HIGH) {

 float temp = (analogRead(A0) * resolution) * 100; // converting the value obtained into temperature

 Serial.print("TEMPRATURE = ");

 Serial.print(temp);

 Serial.print("*C");

 Serial.println(" ");

 delay (500);

 }

}

Code Listing 1

Compile and upload the code above to the Arduino and see the temperature values returned by

clicking on the Serial monitor button . The temperature value is calculated and displayed

every time the push button is pushed as shown in Figure 15 below.

Figure 15

SUMMARY

This unit outlined the different layers of the IoT Architecture, namely the physical layer for

devices, the gateway layer for external communication, the integration layer for storage and

application layer for processing and presentation. The different communication protocols used

at the different layers of an IoT system, namely, physical, network, transport and application

layers have also been analysed.

REFERENCES

1. Postscapes.com. (2017). IoT Standards & Protocols Guide | 2018 Comparisons on

Network, Wireless Comms, Security, Industrial. [online]

Available at: https://www.postscapes.com/internet-of-things-protocols/ [Accessed 26

May 2018]

2. Sundmaeker, H. (2010). Vision and challenges for realising the Internet of Things.

Luxembourg: Publications Office of the European Union.

3. Shi-Wan, L., Miller, B. and Durand, J. (2017). The Industrial Internet of Things Volume

G1: Reference Architecture. 1st ed. [ebook] Industrial Internet Consortium.

Available at: https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf

[Accessed 9 Jun. 2018]

4. Carrez, F. (2018). Open Platforms – IoT-A Architectural Reference Model. [online]

Open-platforms.eu.

Available at: http://open-platforms.eu/standard_protocol/iot-a-architectural-reference-

model/ [Accessed 9 Jun. 2018]

5. Walter, J. (2017). The essential building blocks of an IoT architecture. [online] Mobile

Business Insights.

Available at: https://mobilebusinessinsights.com/2017/09/the-essential-building-

blocks-of-an-iot-architecture/ [Accessed 11 Jun. 2018]

https://www.postscapes.com/internet-of-things-protocols/
https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://open-platforms.eu/standard_protocol/iot-a-architectural-reference-model/
http://open-platforms.eu/standard_protocol/iot-a-architectural-reference-model/
https://mobilebusinessinsights.com/2017/09/the-essential-building-blocks-of-an-iot-architecture/
https://mobilebusinessinsights.com/2017/09/the-essential-building-blocks-of-an-iot-architecture/

