
Unit 2 – R Fundamentals

1

[R Fundamentals]

2.0 Introduction

This Unit highlights the fundamentals of the R programming language. It starts with the R

syntax, discusses about variables, provides an in-depth insight on the R data structures,

identifies the common control structures and ends with an overview of functions.

 To better grasp the concepts, copy and paste the contents of

the examples into an R Script.

 Run it and observe its output.

 Make modifications to the source code and observe its output

again.

Study skills

2.1 Learning Outcomes

 Upon completion of this unit, you will be able to:

Outcomes

 Use the console window and the script editor.

 Have an overview of the arithmetic, relational and logical operators.

 Work with variables.

 Examine the different data structures that exist in R.

 Familiarise yourself with the two main control structures: decisions

and loops.

 Work with in-built and user-defined functions.

Unit 2 – R Fundamentals

2

2.2 R Syntax

The basic syntax of R will be illustrated by writing a “Hello World!” program, a program that

displays “Hello World” to the user.

There are two main ways of interacting with R:

 Using the console

 Using R scripts (plain text files that contain your code)

2.2.1. Using the Console

 Figure 2.1 – R Studio

Figure 2.1 shows the main interface of RStudio and the Console window is located in the

bottom left panel. Commands can be typed directly into the Console. Figure 2.2 shows the

“Hello World” application written in the Console window.

Unit 2 – R Fundamentals

3

Figure 2.2 – Hello World in Console

2.2.2. Using R Scripts

Commands written in the Console are forgotten once the session is closed. Therefore, to have

a complete record of all the commands, it is best to enter the commands in the script editor.

The R Script editor window is located in the top left panel of RStudio and is shown in Figure

2.3.

Figure 2.3 – The R Script Editor Window

The R Script Editor window contains the following options for running the commands:

 Run: Executes the selected line or lines of code

 Re-Run: Re-runs the previous code region

 Source: Executes the entire active document

 Source with Echo: Automatically prints (echo) all expressions inside the sourced script

 To run an entire script, the Source or the Source with Echo

should be used.

Note it!

2.2.3. R Comments

Comments are ignored by the interpreter but are inserted in programs to document the code for

future maintenance. A # in the beginning of a line denotes a comment. R currently does not

support multi-line comments.

In the following code listing, the first line is a comment and is ignored by the interpreter.

Unit 2 – R Fundamentals

4

Example
This program displays Hello World

newString = "Hello World!"

print(newString)

2.3. R Operators

Like other programming languages, R has a number of operators to perform arithmetic, logical

and bitwise operations.

2.3.1. Arithmetic Operators

These operators are used to carry out mathematical operations such as addition and

multiplication. The Table 2.1 below shows a list of arithmetic operators available in R.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation. E.g. 2^3 is 8

x %% y Modulus - x mod y. E.g. 5%%2 is 1

x %/% y Integer division. E.g. 5%/%2 is 2
Table 2.1 – Arithmetic Operators

2.3.2. Relational Operators

Relational operators are used to compare between values. The Table 2.2 below shows a list of

relational operators available in R.

Table 2.2 – Relational Operators

2.3.3. Logical Operators

Logical operators are used to carry out Boolean operations like AND and OR. The Table 2.3

below shows a list of logical operators available in R.

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

Unit 2 – R Fundamentals

5

Operator Description

! Logical NOT

& Element-wise logical AND

&& Logical AND

| Element-wise logical OR

|| Logical OR

Operator Description
Table 2.3 – Control Structures

2.4. Variables

A variable is a reserved memory location to store values and therefore provides a named storage

that programs can manipulate. A variable in R can store an atomic vector, group of atomic

vectors or a combination of many R-Objects. A valid variable name consists of letters, numbers

and the dot or underline characters but cannot start with a number or an underscore. The

variable name starts with a letter or the dot not followed by a number. The following shows

examples of valid and invalid variable names.

Example
Valid variable names: var, var1, var.1, var_1, .var1

Invalid variable names:2var, .2var, _var2, var2%

2.4.1. Variable Assignment

Unlike other programming languages, variables in R can be assigned values using leftward,

rightward and equal to operators. The print() or cat() functions can be used to print the values

of the variables. The cat() function is used to print multiple items as a continuous print output.

The following code listing shows the different assignment operators.

Example
Assignment using equal operator.

var.1 = 22

Assignment using leftward operator.

var.2 <- "Learning R is fantastic"

Assignment using rightward operator.

TRUE -> var.3

print(var.1)

cat ("var.1 is ", var.1 ,"\n")

cat ("var.2 is ", var.2 ,"\n")

cat ("var.3 is ", var.3 ,"\n")

cat("var.1 is", var.1, "var.2 is ", var.2 ,"var.3 is ", var.3)

The above code produces the following output.

Unit 2 – R Fundamentals

6

Program Output
[1] 22

var.1 is 22

var.2 is Learning R is fantastic

var.3 is TRUE

var.1 is 22 , var.2 is Learning R is fantastic and var.3 is TRUE

 Copy the above example and paste the contents into an R Script.

 Run it by clicking on the Source or Source with Echo button.

 Assign different values to var.1, var.2 and var.3 and run the script

again. Activity

 Save All your activities as a script with an appropriate numbering.

E.g. Save the above script as Activity 2_4_1

Tip

2.4.2. Variable Data Type

In many other programming languages such as C and Java, variables are used to store

information of various data types such integer, floating point, double, string, Boolean etc…

Unlike these programming languages, the variables in R are not declared with some data type.

The variables are assigned with R-Objects and the data type of the R-object becomes the data

type of the variable. So R is called a dynamically typed language where the data type of a

variable can change again and again in a program.

In the following code listing, the variable var_x takes a number of successive values. The

class() function is used to identify the class of var_x at those different points in time.

Example
var_x <- 22.5

cat("Initially the class of var_x is",class(var_x),"\n\n")

var_x <- "Hello World!"

cat("Now the class of var_x changes to",class(var_x),"\n\n")

var_x <- 45L

cat("Next the class of var_x becomes",class(var_x),"\n\n")

The above code produces the following output.

Program Output
Initially the class of var_x is numeric

Now the class of var_x changes to character

Next the class of var_x becomes integer

Unit 2 – R Fundamentals

7

2.4.3. Locating Variables and Objects

The ls() and objects() functions return a vector of character strings with the names of the

objects, including variables, in the specified environment.

Example
print(ls())

print(objects())

The above code produces the following output. This is a sample output and will depend on the

variables declared in the environment.

Program Output
[1] "age2" "agevar" "ageVar1" "var.1" "var.2" "var.3" "var_x"

[1] "age2" "agevar" "ageVar1" "var.1" "var.2" "var.3" "var_x"

The pattern argument can be used to limit the results to only include names that match the

specified pattern. In the following example, names of object that contains “var” will be

displayed.

Example
print(ls(pattern="var"))

The above code produces the following output. This is a sample output and will depend on the

variables declared in the environment.

Program Output
[1] "agevar" "var.1" "var.2" "var.3" "var_x"

The variables with names starting with dot(.) are hidden. To list all the names including those

starting with dot(.), the "all.names = TRUE" argument has to be passed to the ls()

function.

Example
print(ls(all.names=TRUE))

The above code produces the following output. This is a sample output and will depend on the

variables declared in the environment.

Program Output
[1] ".Random.seed" ".var1" "age2" "agevar" "ageVar1"

[6] "var.1" "var.2" "var.3" "var_x"

Unit 2 – R Fundamentals

8

2.4.4. Removing Variables and Objects

The rm() function can be used to remove objects from the environment. All the objects to be

removed can be specified successively as character strings, or in a vector list, or through a

combination of both.

Example
print(ls())

rm (ageVar1, age2)

print(ls())

print(ageVar1)

The above code produces the following output. This is a sample output and will depend on the

variables declared in the environment.

Program Output
[1] "age2" "agevar" "ageVar1" "var.1" "var.2" "var.3" "var_x"

[1] "agevar" "var.1" "var.2" "var.3" "var_x"

Error in print(ageVar1) : object 'ageVar1' not found

To delete all the variables in the environment, the rm() function has to be used in conjunction

with the ls() function.

Example
print(ls())

rm(list = ls())

print(ls())

print(agevar)

The above code produces the following output. This is a sample output and will depend on the

variables declared in the environment. The output indicates that all the objects have been

removed

Program Output
[1] "agevar" "var.1" "var.2" "var.3" "var_x"

character(0)

Error in print(agevar) : object 'agevar' not found

 Create a new R Script.

Unit 2 – R Fundamentals

9

Activity Print the names of the objects, including variables, in your environment.

Hint: See example 2.4.3.

 Now delete all the variables in the environment.

 In the same script, run the example 2.4.1 and then 2.4.2

 Now, again print the names of the objects, including variables, in your

environment.

 You should have the following as output:

[1] "var.1" "var.2" "var.3" "var_x"

 Save the above script as Activity 2_4_4

2.4.5. Classes of Objects

An R object is anything that can be assigned to a variable including constants, data structures,

functions, and even graphs. R has six basic or “atomic” classes of objects:

• Character

• Numeric (real numbers)

• Integer

• Complex

• Logical (True/False)

• Raw

Therefore, a vector, the simplest data structure, can store data of the above types as shown in

Figure 2.4.

 Figure 2.4 – Classes of Objects

Unit 2 – R Fundamentals

10

2.5. Data Structures

R has a number of data structures for holding data. These include:

• Vectors including Scalars

• Matrices

• Arrays

• Data frames, and

• Lists.

These data structures differ in a number of ways such as the type of data they can hold, the way

they are created, their structural complexity, and the way to identify and access the individual

elements. Figure 2.5 gives an illustration of these data structures.

 Figure 2.5 – R Data Structures

2.5.1. Vectors and Scalars

A vectors is a one-dimensional array that can hold numeric data, character data, or logical data.

Scalars are one-element vectors. Figures 2.6 gives an illustration of a vector and a scalar.

 Figure 2.6 – Vector and Scalar

2.5.1.1. Vectors and Scalars

The following example shows the creation of a scalar which is a single value vector.

Example
a <- 10

Unit 2 – R Fundamentals

11

b <- “R Programming is fun”

c <- TRUE

print(a)

print(b)

print(c)

The above code produces the following output.

Program Output
[1] 10

[1] "R Programming is fun"

[1] TRUE

2.5.1.2. Vector Creation

A generic function c() which combines its arguments is used to form multiple element vectors.

The following example shows a vector a of type integer, a vector b of type double, a vector c

of type character, a logical vector d, a complex vector e and a raw vector f.

Example
vector of type integer

a <- c(1L, 2L, 3L, -4L, -2L, 7L)

vector of type double

b <- c(12.5,8.7,-5.1,2.8)

vector of type character

c <- c("item1", "item2", "item3")

vector of type logical

d <- c(TRUE, FALSE, TRUE, FALSE, FALSE, TRUE)

vector of type complex

e <- 3+2i

vector of type raw

f <- charToRaw(“Hello World”)

print(a)

print(b)

print(c)

print(d)

print(e)

print(f)

The above code produces the following output.

Program Output
[1] 1 2 3 -4 -2 7

[1] 12.5 8.7 -5.1 2.8

[1] "item1" "item2" "item3"

Unit 2 – R Fundamentals

12

[1] TRUE FALSE TRUE FALSE FALSE TRUE

[1] 3+2i

[1] 48 65 6c 6c 6f 20 57 6f 72 6c 64

Note that vectors can contain data of the same type (numeric, character, or logical). If the

arguments are of differing data types, they are coerced to a common type. E.g. The non-

character values are coerced to the character type if one of the elements is a character.

Example
Logical and numerical values are coerced to characters

a <- c("Red", 5L, 2.3, TRUE, 6)

print(a)

The above code produces the following output.

Program Output
[1] "Red" "5" "2.3" "TRUE" "6"

2.5.1.3. Using the Colon and Sequence Operators

The colon operator (:) or sequence operator, seq(), can also be used to create multiple element

vectors. The following example shows the use of the colon and sequence operators.

Example
Creating a sequence from 1 to 10

a <- 1:10

print(a)

Creating a sequence from -5.5 to 3.5

b <- -5.5:3.5

print(b)

Discarding final element if not in sequence

c <- 2.2:8.8

print(c)

Create vector with elements from 2.2 to 10 incrementing by 0.8

print(seq(2, 10, by = 0.8))

print(d)

The above code produces the following output.

Program Output
[1] 1 2 3 4 5 6 7 8 9 10

[1] -5.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

[1] 2.2 3.2 4.2 5.2 6.2 7.2 8.2

[1] 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10.0

Unit 2 – R Fundamentals

13

2.5.1.4. Accessing Vector Elements

The elements of a vector can be accessed by using a numeric vector of positions within

brackets. The indexing starts with 1. A negative index will the corresponding element from the

result. Logical indexing, i.e. using TRUE, FALSE, can also be used for indexing.

The following code listing shows how the vector elements can be accessed by using indexes

and logical indexing.

Example
Accessing vector elements using indexes

days <- c("Mon","Tue","Wed","Thurs","Fri","Sat","Sun")

working <- days[c(1:5)]

print(working)

Accessing vector elements using logical indexing

weekend <- days[c(FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE)]

print(weekend)

Dropping Elements with negative indices

tuition <- days[c(-1,-3,-7:-5)]

print(tuition)

The above code produces the following output.

Program Output
[1] "Mon" "Tue" "Wed" "Thurs" "Fri"

[1] "Sat" "Sun"

[1] "Tue" "Thurs"

2.5.2. Vector Manipulation

This section covers the main operations that can be performed on vectors, such as arithmetic,

recycling and sorting.

2.5.2.1. Vector arithmetic

Vectors of the same length can be added, subtracted, multiplied or divided, producing another

vector as output.

The following code listing shows examples of vector creation, addition, subtraction,

multiplication and division.

Example
Vector Creation

vec1 <- c(2,5,9,-3,6)

vec2 <- c(4,-2,6,12,5)

Vector addition

add <- vec1+vec2

print(add)

Vector subtraction

Unit 2 – R Fundamentals

14

sub <- vec1-vec2

print(sub)

Vector multiplication

multi <- vec1*vec2

print(multi)

Vector division

div <- vec1/vec2

print(div)

The above code produces the following output.

Program Output
[1] 6 3 15 9 11

[1] -2 7 3 -15 1

[1] 8 -10 54 -36 30

[1] 0.50 -2.50 1.50 -0.25 1.20

 The measurements of four cylinders are as follows:

 Their height are: 8, 6, 5.5, 10 and,

 Their radius are: 1.5, 3, 4, 0.5

 Read these data into two vectors by giving the vectors appropriate names.

 Calculate the volume of each cylinder as follows:

Volume = pi * radius * radius * height

 The Volumes should be saved in another vector and displayed accordingly.

 Save the above script as Activity 2_5_2_1

Activity

2.5.2.2. Vector Recycling

If two vectors are of unequal length, the shorter one will be recycled in order to match the

longer vector. In the following example, vectors vec1 and vec2 have unequal lengths. Therefore

vec1 will be recycled.

Example
Vector Creation

vec1 = c(10, 20, 30)

vec2 = c(1, 2, 3, 4, 5, 6, 7, 8, 9)

Vector addition

add <- vec1+vec2

vec1 is recycled to c(10,20,30,10,20,30,10,20,30)

print(add)

Vector subtraction

sub <- vec1-vec2

print(sub)

Unit 2 – R Fundamentals

15

The above code produces the following output.

Program Output
[1] 6 3 15 9 11

[1] -2 7 3 -15 1

[1] 8 -10 54 -36 30

[1] 0.50 -2.50 1.50 -0.25 1.20

2.5.2.3. Vector Sorting

The elements of a vector can be sorted using the sort() function as shown in the example below.

By default, the elements are sorted in ascending order but they can also be sorted in descending

order by setting the optional parameter decreasing to TRUE. Characters are also sorted based

on their character code with lowercase letters appearing first if the vector is sorted in ascending

order.

Example
Vector Creation

vec1 <- c(2,5,7,6,-2,3)

vec2 <- c("Red","blue","Yellow","green")

Sort vector elements

sorted <- sort(vec1)

print(sorted)

Sort in the reverse order

revsort <- sort(vec1, decreasing = TRUE)

print(revsort)

Sorting character

sorted <- sort(vec2)

print(sorted)

Sorting in reverse order

revsort <- sort(vec2, decreasing = TRUE)

print(revsort)

The above code produces the following output.

Program Output
[1] -2 2 3 5 6 7

[1] 7 6 5 3 2 -2

[1] "blue" "green" "Red" "Yellow"

[1] "Yellow" "Red" "green" "blue"

Unit 2 – R Fundamentals

16

 The following script contain some common errors. Copy and paste the

faulty code into a new R script. Analyse the code and remove the errors

so that the script can execute.

vector1 <- c('one', 'two, 'three', 'four')

vec.var <- var(c(1, 3, 3, 4, 5,))

vec.mean <- mean(c(1, 3, 3, 4, 5)

vec.Min <- Min(c(5, 4, 3, 2, 1))

vec.max <- maxx(c(5, 4, 3, 2, 1))

vector2 <- c('a', 'b', 'f', 'g")

vec.var

vec.mean

vec.min

vec.max

vector2

 Save the above script as Activity 2_5_2_3

Activity

2.5.3. Matrices

A matrix is R object in which the elements are arranged in a two-dimensional rectangular layout

where each element has the same atomic type (numeric, character, or logical). Though it is

possible to create matrices with only characters or logical values, in most cases, matrices

containing numeric elements are created and used in mathematical calculations. Figure 2.7

gives an illustration of a matrix consisting of three rows and 3 columns.

 Figure 2.7 – Matrix

Matrices are created with the matrix() function. The general syntax is as follows:

Syntax

matrix(data, nrow, ncol, byrow, dimnames)

 data is the vector contains the elements of the matrix

 nrow is the row dimension (number of rows of the matrix)

 ncol is the column dimension (number of columns).

 byrow is a logical value. If set to TRUE, then the vector elements

are arranged by row.

 dimnames contains optional row and column labels.

Unit 2 – R Fundamentals

17

The following example shows different ways of creating a matrix.

Example
Elements arranged sequentially by row

mat1 <- matrix(c(1:6), nrow = 3, byrow = TRUE)

print(mat1)

Elements arranged sequentially by column

mat2 <- matrix(c(1:6), nrow = 3, byrow = FALSE)

print(mat2)

Elements arranged sequentially using ncol and default col arrangment

mat3 <- matrix(c(7:12), ncol = 3)

print(mat3)

Labelling the columns and rows.

rownames = c("row1", "row2", "row3")

colnames = c("col1", "col2")

mat4 <- matrix(c(13:18), nrow = 3, byrow = TRUE, dimnames = list(rownames,

colnames))

print(mat4)

The above code produces the following output.

Program Output
 [,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

 [,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

 [,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

 col1 col2

row1 13 14

row2 15 16

row3 17 18

2.5.3.1. Combining Matrices

The columns of two matrices having the same number of rows can be combined into a larger

matrix using the cbind(), which stands for column bind, function. In the following example,

matrixB has 3 rows and 2 columns, and matrixC has 3 rows and 1 column. MatrixB and matrixC

have been combined using the cbind() function to form matrixA.

Example
Creating matrix B with 3 rows and 2 cols

matrixB = matrix(c(2, 4, 3, 1, 5, 7), nrow=3)

cat("MatrixB \n")

print(matrixB)

Unit 2 – R Fundamentals

18

Creating matrix B with 3 rows and 1 col

matrixC = matrix(c(7, 4, 2), nrow=3)

cat("MatrixC \n")

print(matrixC)

Combine 2 cols from B and 1 col from C to create A

matrixA=cbind(matrixB,matrixC)

cat("MatrixA \n")

print(matrixA)

The above code produces the following output.

Program Output
MatrixB

 [,1] [,2]

[1,] 2 1

[2,] 4 5

[3,] 3 7

MatrixC

[1,] 7

[2,] 4

[3,] 2

MatrixA

 [,1] [,2] [,3]

[1,] 2 1 7

[2,] 4 5 4

[3,] 3 7 2

Similarly, the rows of two matrices having the same number of columns can be combined into

a larger matrix using the rbind(), which stands for row bind, function. In the following example,

matrixB has 2 rows and 3 columns, and matrixC has 1 row and 3 columns. MatrixB and matrixC

have been combined using the rbind() function to form matrixA.

Example
Creating matrix B with 3 cols and 2 rows

matrixB = matrix(c(2, 4, 3, 1, 5, 7), ncol=3)

cat("MatrixB \n")

print(matrixB)

Creating matrix B with 3 cols and 1 row

matrixC = matrix(c(7, 4, 2), ncol=3)

cat("MatrixC \n")

print(matrixC)

Combine 2 rows from B and 1 row from C to create A

matrixA=rbind(matrixB,matrixC)

cat("MatrixA \n")

print(matrixA)

The above code produces the following output.

Unit 2 – R Fundamentals

19

Program Output
MatrixB

 [,1] [,2] [,3]

[1,] 2 3 5

[2,] 4 1 7

MatrixC

 [,1] [,2] [,3]

[1,] 7 4 2

MatrixA

 [,1] [,2] [,3]

[1,] 2 3 5

[2,] 4 1 7

[3,] 7 4 2

2.5.3.2. Accessing Elements of a Matrix

An element of a matrix can be accessed by using its column and row index as shown in the

example below.

Example
Matrix Creation

rownames = c("row1", "row2", "row3")

colnames = c("col1", "col2")

mat <- matrix(c(13:18), nrow = 3, byrow = TRUE, dimnames = list(rownames,

colnames))

print(mat)

Access the element in 1st row 2nd col

print(mat[1,2])

Access the element at 3rd row 1st col

print(mat[3,1])

Access only the 2nd row

print(mat[2,])

Access only the 1st col

print(mat[,1])

The above code produces the following output.

Program Output
 col1 col2

row1 13 14

row2 15 16

row3 17 18

[1] 14

[1] 17

col1 col2

 15 16

Unit 2 – R Fundamentals

20

row1 row2 row3

13 15 17

Activity

 Create three vectors x, y and z with each vector having 3 elements.

 Vector x has integer elements 1, 4 and 5.

 Vector y has integer elements 4, 9 and 6.

 Vector z has integer elements 2, 1 and 7.

 Combine the above 3 vectors to form the following matrix A:

 x y z
[1,] 1 4 2
[2,] 4 9 1
[3,] 5 6 7

 Change the row names to a, b and c.

 Save the above script as Activity 2_5_3_2

Activity

 Create a vector with integers 1 to 12. Convert the vector to a 4 x 3

matrix B. Note that the column names should be x, y, z and the row

names a, b, c, d.

 Matrix B should therefore be as follows:

 x y z
a 1 5 9
b 2 6 10
c 3 7 11
d 4 8 12

2.5.3.3. Matrix Arithmetic

Various arithmetic operations can be performed on matrices resulting in another matrix.

However, the dimensions of the matrices involved in the operations should be the same, i.e.

the matrices’ number of rows and columns should match. The example below shows the four

arithmetic operations being performed on two 2x3 matrices.

Example
Create two 2x3 matrices

mat1 <- matrix(c(5, 7, -3, 4, 10, -1), nrow = 2)

print(mat1)

mat2 <- matrix(c(5, 4, 6, -5, 4, 2), nrow = 2)

print(mat2)

Add the matrices

add <- mat1 + mat2

cat("Result of addition","\n")

print(add)

Subtract the matrices

sub <- mat1 - mat2

cat("Result of subtraction","\n")

print(sub)

Unit 2 – R Fundamentals

21

Multiply the matrices

result <- mat1 * mat2

cat("Result of multiplication","\n")

print(result)

Divide the matrices

result <- mat1 / mat2

cat("Result of division","\n")

print(result)

The above code produces the following output.

Program Output
 [,1] [,2] [,3]

[1,] 5 -3 10

[2,] 7 4 -1

 [,1] [,2] [,3]

[1,] 5 6 4

[2,] 4 -5 2

Result of addition

 [,1] [,2] [,3]

[1,] 10 3 14

[2,] 11 -1 1

Result of subtraction

 [,1] [,2] [,3]

[1,] 0 -9 6

[2,] 3 9 -3

Result of multiplication

 [,1] [,2] [,3]

[1,] 25 -18 40

[2,] 28 -20 -2

Result of division

 [,1] [,2] [,3]

[1,] 1.00 -0.5 2.5

[2,] 1.75 -0.8 -0.5

Unit 2 – R Fundamentals

22

Activity

 This activity continues from the previous activity where you had created

matrices A and B.

 Try the following: C = B + A

 You should get the following error:

Error in B + A : non-conformable arrays

 This is due to the fact that B is a 4 x 3 matrix while A is a 3 x 3 matrix.

 Create a vector z1 with integer values: 5, 9 and 0

 Using rbind(), add this vector to A and rename the rows.

 Now, type C = B + A and display C.

 You should have the following result:

 x y z
a 2 9 11
b 6 15 11
c 8 13 18
d 9 17 12

 Save the above script as Activity 2_5_3_3

2.5.4. Arrays

Arrays are similar to matrices but can store data in more than two dimensions. E.g. an array of

dimension (3, 4, 5) creates 5 rectangular matrices each with 3 rows and 4 columns. Similar to

vectors and matrices, arrays can store data of only one data type. Figure 2.8 gives an illustration

of an array.

 Figure 2.8 – Array

Arrays are created with an array() function and its general syntax is as follows:

Syntax

myarray <- array(vector, dimensions, dimnames)

 vector contains the data for the array

 dimensions is the maximum index for each dimension

 dimnames contains optional dimension labels.

Unit 2 – R Fundamentals

23

The following listing gives an example of creating a three-dimensional (2x3x4) array of

numbers.

Example
Create a (2x3x4) array

array1 <- array(c(1:24),dim = c(2,3,4))

print(array1)

The above code produces the following output.

Program Output
, , 1

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

 [,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

, , 3

 [,1] [,2] [,3]

[1,] 13 15 17

[2,] 14 16 18

, , 4

 [,1] [,2] [,3]

[1,] 19 21 23

[2,] 20 22 24

Note it!

 The sample() function is used to generate a random integer

number. E.g. sample(1:10, 1) has as first argument a vector of

valid numbers (1 to 10), and as second argument, 1 which

indicates that one number should be returned.

Example
Create a (2x3x4) array

array1a <- array(sample(1:60,24),dim = c(2,3,4))

print(array1a)

The above code produces the following output.

Program Output
, , 1

 [,1] [,2] [,3]

[1,] 9 32 17

[2,] 27 57 12

Unit 2 – R Fundamentals

24

, , 2

 [,1] [,2] [,3]

[1,] 7 25 52

[2,] 46 54 10

, , 3

 [,1] [,2] [,3]

[1,] 59 29 30

[2,] 34 19 36

, , 4

 [,1] [,2] [,3]

[1,] 2 18 56

[2,] 39 53 11

2.5.4.1. Naming Columns and Rows

Arrays can be created with vectors of different lengths. Moreover, names can be given to the

rows, columns and matrices in the array by using the dimnames parameter as shown in the

following example.

Example
Create two vectors of different lengths

vector1 <- c(seq(5,15,by=2))

vector2 <- c(1,2,3)

Naming the rows, columns and matrices

column.names <- c("Col1","Col2","Col3")

row.names <- c("Row1","Row2","Row3")

matrix.names <- c("Matrix1","Matrix2")

Inputting the vectors, dimensions and names to the array

array2 <- array(c(vector1,vector2),dim = c(3,3,2),dimnames =

list(row.names,column.names,matrix.names))

print(array2)

The above code produces the following output.

Program Output
, , Matrix1

 Col1 Col2 Col3

Row1 5 11 1

Row2 7 13 2

Row3 9 15 3

, , Matrix2

 Col1 Col2 Col3

Row1 5 11 1

Row2 7 13 2

Row3 9 15 3

Unit 2 – R Fundamentals

25

2.5.4.2. Accessing Array Elements

As it can be seen, arrays are a natural extension of matrices. Consequently, the identification

of array elements follows from matrices. The following example prints some elements of the

array defined in the previous example.

Example
Print the element in the 2nd row and 3rd column of the 1st matrix

print(array2[2,3,1])

Print the 1st row of the second matrix of the array

print(array2[1,,2])

Print the 2nd Matrix.

print(array2[,,2])

The above code produces the following output.

Program Output
[1] 2

Col1 Col2 Col3

 5 11 1

 Col1 Col2 Col3

Row1 5 11 1

Row2 7 13 2

Row3 9 15 3

Activity

 Create a 4x3x2 array of 24 elements using the random values between 1

and 50

 Name the columns, rows and matrices using names of your choice

 Print the array

 Print the second matrix

 Print the last row of the second matrix

 print the second column of the first matrix

 Save the above script as Activity 2_5_4_2

2.5.4.3. Manipulating Elements of an Array

As mentioned previously, an array is made up of matrices in multiple dimensions. Therefore,

the elements of the matrices can be accessed and used to manipulate the elements of the array.

In the following example, two (3x3x2) arrays, array1 and array2, are created from vectors of

different lengths. Two matrices are then extracted as follows: matrix1 from the first matrix of

array1 and matrix2 from the second matrix of array2. These two matrices are then

arithmetically manipulated (using subtraction and addition) to yield matrix3 and matrix4.

Array3 is finally created as a combination of matrix3 and matrix4.

Unit 2 – R Fundamentals

26

Example
Naming the rows, columns and matrices

column.names <- c("Col1","Col2","Col3")

row.names <- c("Row1","Row2","Row3")

matrix.names <- c("Matrix1","Matrix2")

Create two vectors of different lengths for array1

vector1 <- c(seq(5,21,by=2))

vector2 <- c(1,2,3)

Inputting the vectors, dimensions and names to the array, array1

array1 <- array(c(vector1,vector2),dim = c(3,3,2),dimnames =

list(row.names,column.names,matrix.names))

cat ("Array1\n")

print(array1)

Create two vectors of different lengths for array2

vector3 <- c(11,12,13)

vector4 <- c(1,-10,5,1,3,-2,6,2,9)

Creating array2

array2 <- array(c(vector3,vector4),dim = c(3,3,2),dimnames =

list(row.names,column.names,matrix.names))

cat ("Array2\n")

print(array2)

create matrices from the first matrix of these arrays

matrix1 <- array1[,,1]

matrix2 <- array2[,,2]

cat ("Matrix1 - 1st Matrix of Array1\n")

print(matrix1)

cat ("Matrix2 - 2nd Matrix of Array2\n")

print(matrix2)

Subtracting the matrices to get array3

matrix3 <- matrix1 - matrix2

matrix4 <- matrix1 + matrix2

cat ("Matrix3\n")

print(matrix3)

cat ("Matrix4\n")

print(matrix4)

Creating array3 from matrix3 and matrix4

array3 <- array(c(matrix3,matrix4),dim = c(3,3,2),dimnames =

list(row.names,column.names,matrix.names))

cat ("Array3 made up from Matrix 3 and Matrix 4\n")

print(array3)

The above code produces the following output.

Unit 2 – R Fundamentals

27

Program Output
Array1

, , Matrix1

 Col1 Col2 Col3

Row1 5 11 17

Row2 7 13 19

Row3 9 15 21

, , Matrix2

 Col1 Col2 Col3

Row1 1 5 11

Row2 2 7 13

Row3 3 9 15

Array2

, , Matrix1

 Col1 Col2 Col3

Row1 11 1 1

Row2 12 -10 3

Row3 13 5 -2

, , Matrix2

 Col1 Col2 Col3

Row1 6 11 1

Row2 2 12 -10

Row3 9 13 5

Matrix1 - 1st Matrix of Array1

 Col1 Col2 Col3

Row1 5 11 17

Row2 7 13 19

Row3 9 15 21

Matrix2 - 2nd Matrix of Array2

 Col1 Col2 Col3

Row1 6 11 1

Row2 2 12 -10

Row3 9 13 5

Matrix3

 Col1 Col2 Col3

Row1 -1 0 16

Row2 5 1 29

Row3 0 2 16

Matrix4

 Col1 Col2 Col3

Row1 11 22 18

Row2 9 25 9

Row3 18 28 26

Array3 made up from Matrix 3 and Matrix 4

, , Matrix1

Unit 2 – R Fundamentals

28

 Col1 Col2 Col3

Row1 -1 0 16

Row2 5 1 29

Row3 0 2 16

, , Matrix2

 Col1 Col2 Col3

Row1 11 22 18

Row2 9 25 9

Row3 18 28 26

Activity

 Copy and run the above example in a new R script.

 Create an array, array4, with the second matrix of array1 and the first

matrix of array2.

 From array4, subtract array3 and save it as array5

 Print array5 which should display the following:

, , Matrix1

 Col1 Col2 Col3
Row1 2 5 -5
Row2 -3 6 -16
Row3 3 7 -1

, , Matrix2

 Col1 Col2 Col3
Row1 0 -21 -17
Row2 3 -35 -6
Row3 -5 -23 -28

 Save the above script as Activity 2_5_4_3

2.5.4.4. Calculations across the Elements of an Array

Calculations can performed across the array elements using the apply() function and its

general syntax is as follows:

Syntax
apply(x, margin, fun)

 x is an array, including a matrix.

 Margin is a vector giving the subscripts which the function will be

applied over. 1 indicates rows, 2 indicates columns, c(1,2) indicates

rows and columns.

 fun is the function (any R or user-defined function) to be applied

across the elements of the array.

The following example shows the use of the:

1. Sum function applied to the elements of each row

Unit 2 – R Fundamentals

29

2. Product function applied to the elements of each column

3. Mean function applied to the elements of each column, and,

4. Sum function applied to the respective elements across all matrices

Example
Naming the rows, columns and matrices

column.names <- c("Col1","Col2","Col3")

row.names <- c("Row1","Row2","Row3")

matrix.names <- c("Matrix1","Matrix2")

Create two vectors of different lengths for array1

vector1 <- c(seq(5,21,by=2))

vector2 <- c(1,2,3)

Inputting the vectors, dimensions and names to the array, array1

array1 <- array(c(vector1,vector2),dim = c(3,3,2),dimnames =

list(row.names,column.names,matrix.names))

cat ("Array1\n")

print(array1)

Use apply to calculate the sum of the rows across all matrices

rows.sum <- apply(array1, c(1), sum)

cat("rows.sum \n")

print(rows.sum)

Use apply to calculate the product of the columns across all matrices

cols.prod <- apply(array1, c(2), prod)

cat("cols.prod \n")

print(cols.prod)

Use apply to calculate the mean of the columns across all matrices

cols.mean <- apply(array1, c(2), mean)

cat("cols.mean \n")

print(cols.mean)

Use apply to calculate the sum of the respective elements across all

matrices

matrix.sum <- apply(array1, c(1,2), sum)

cat("matrix.sum \n")

print(matrix.sum)

The above code produces the following output.

Program Output
Array1

, , Matrix1

 Col1 Col2 Col3

Row1 5 11 17

Row2 7 13 19

Row3 9 15 21

, , Matrix2

 Col1 Col2 Col3

Row1 1 5 11

Row2 2 7 13

Row3 3 9 15

Unit 2 – R Fundamentals

30

rows.sum

Row1 Row2 Row3

 50 61 72

cols.prod

 Col1 Col2 Col3

 1890 675675 14549535

cols.mean

Col1 Col2 Col3

 4.5 10.0 16.0

matrix.sum

 Col1 Col2 Col3

Row1 6 16 28

Row2 9 20 32

Row3 12 24 36

Activity

 This activity continues from the previous activity.

 For array5, calculate and display the:

 sum of the rows across all matrices

 sum of the columns across all matrices

 product of the rows across all matrices

 product of the columns across all matrices

 mean of the columns across all matrices

 the sum of the respective elements across all matrices

 Save the above script as Activity 2_5_4_4

2.5.5. Data Frames

A data frame is a two-dimensional array-like structure or a table in which each column can

contain different types of data (numeric, character, etc...) and each row contains one set of

values from each column. A data frame is one of the most common data structures that are used

in R and is similar to the datasets manipulated in statistical analysis tools such as SAS, SPSS,

and Stata. Figure 2.9 gives an illustration of a data frame.

 Figure 2.9 – Data Frame

Unit 2 – R Fundamentals

31

A data frame is created with the data.frame() function and its general syntax is as follows:

Syntax
mydata <- data.frame(col1, col2, col3,…)

 col1, col2, col3, … are column vectors of any type (such as character,

numeric, or logical)

 Names for each column can be provided with the names function.

The following code listing creates a data frame with information about students. Five vectors

are initially created: stud.id, stud.name, stud.dob, stud.course, stud.cpa and used in the

data.frame() function to create the data frame stud.

Example
Setting the vectors

stud.id = c(1011:1015)

stud.name = c("John", "Mary", "Peter", "Janet", "Williams")

stud.dob = as.Date(c("1998-02-05", "1998-11-11", "1997-12-26", "1996-09-

24", "1997-10-05"))

stud.course = c("IC320", "IC311", "E565", "E318", "E319")

stud.cpa = c(70.9, 44.7, 83.4, 68.4, 51.9)

Create the data frame

stud = data.frame(stud.id, stud.name, stud.dob, stud.course, stud.cpa)

print(stud)

The above code produces the following output.

Program Output
 stud.id stud.name stud.dob stud.course stud.cpa

1 1011 John 1998-02-05 IC320 70.9

2 1012 Mary 1998-11-11 IC311 44.7

3 1013 Peter 1997-12-26 E565 83.4

4 1014 Janet 1996-09-24 E318 68.4

5 1015 Williams 1997-10-05 E319 51.9

2.5.5.1. The Str and Summary functions

The str() function compactly display the internal structure of an R object, in this case, a data

frame. Summary() is a generic function that can be used to produce result summaries of a data

frame. The following example shows how to display the internal structure of the stud data

frame using the str() function and also displays its summary using the summary() function.

Example
Display the internal structure

str(stud)

Display the summary

print(summary(stud))

The above code produces the following output.

Program Output

Unit 2 – R Fundamentals

32

'data.frame': 5 obs. of 5 variables:

 $ stud.id : int 1011 1012 1013 1014 1015

 $ stud.name : Factor w/ 5 levels "Janet","John",..: 2 3 4 1 5

 $ stud.dob : Date, format: "1998-02-05" "1998-11-11" ...

 $ stud.course: Factor w/ 5 levels "E318","E319",..: 5 4 3 1 2

 $ stud.cpa : num 70.9 44.7 83.4 68.4 51.9

 stud.id stud.name stud.dob stud.course stud.cpa

 Min. :1011 Janet :1 Min. :1996-09-24 E318 :1 Min. :44.70

 1st Qu.:1012 John :1 1st Qu.:1997-10-05 E319 :1 1st Qu.:51.90

 Median :1013 Mary :1 Median :1997-12-26 E565 :1 Median :68.40

 Mean :1013 Peter :1 Mean :1997-11-20 IC311:1 Mean :63.86

 3rd Qu.:1014 Williams:1 3rd Qu.:1998-02-05 IC320:1 3rd Qu.:70.90

 Max. :1015 Max. :1998-11-11 Max. :83.40

Activity

 Create the following data frame.

 Name Age Weight Sex
1 John 15 49 M
2 Mary 20 71 F
3 Peter 17 58 M
4 William 19 62 M
5 Kate 25 67 F

 Display the internal structure of the data frame.

 Save the above script as Activity 2_5_5

2.5.5.2. Extracting data from the Data Frame

The elements of a data frame can be extracted by using the subscript notation, used previously

with matrices, or by specifying the column names. The $ notation can also be used to refer to

a specific variable from a given data frame. Using the stud data frame created earlier, the

following code listing demonstrates these approaches.

Example
Extract first 2 columns using indexes

stud[1:2]

Extract Specific columns

stud[c("stud.course", "stud.cpa")]

Extract Specific columns using the $ notation

result <- data.frame(stud$stud.course,stud$stud.cpa)

print(result)

Extract 2nd and 3rd rows

stud[2:3,]

Extract 1st and 4th row with 2nd and 5th column

stud[c(1,4),c(2,5)]

The above code produces the following output.

Unit 2 – R Fundamentals

33

Program Output
 stud.id stud.name

1 1011 John

2 1012 Mary

3 1013 Peter

4 1014 Janet

5 1015 Williams

 stud.course stud.cpa

1 IC320 70.9

2 IC311 44.7

3 E565 83.4

4 E318 68.4

5 E319 51.9

 stud.stud.course stud.stud.cpa

1 IC320 70.9

2 IC311 44.7

3 E565 83.4

4 E318 68.4

5 E319 51.9

 stud.id stud.name stud.dob stud.course stud.cpa

2 1012 Mary 1998-11-11 IC311 44.7

3 1013 Peter 1997-12-26 E565 83.4

 stud.name stud.cpa

1 John 70.9

4 Janet 68.4

Activity

 This activity follows from the previous one.

 From the data frame, extract the age and the weight.

 Extract the name and the sex and save the result in another data frame

 Display this new data frame.

 Save the updated script as Activity 2_5_5_2

2.5.5.3. Adding more data to an existing Data Frame

Columns and rows can be added to expand an existing data frame. A column can be added to

a data frame by adding the column vector using a new column name. The following code listing

demonstrates the addition of a new column to an existing data frame.

Example
Setting the vectors

stud.id = c(1011:1015)

stud.name = c("John", "Mary", "Peter", "Janet", "Williams")

stud.dob = as.Date(c("1998-02-05", "1998-11-11", "1997-12-26", "1996-09-

24", "1997-10-05"))

stud.course = c("IC320", "IC311", "E565", "E318", "E319")

stud.cpa = c(70.9, 44.7, 83.4, 68.4, 51.9)

Create the data frame.

Unit 2 – R Fundamentals

34

stud = data.frame(stud.id, stud.name, stud.dob, stud.course, stud.cpa)

cat("stud \n")

print(stud)

Adding the column Class to the existing data frame

stud$stud.class=c("First Class", "Third Class", "First Class", "Merit",

"Second Class")

print(stud)

The above code produces the following output.

Program Output
 stud.id stud.name stud.dob stud.course stud.cpa

1 1011 John 1998-02-05 IC320 70.9

2 1012 Mary 1998-11-11 IC311 44.7

3 1013 Peter 1997-12-26 E565 83.4

4 1014 Janet 1996-09-24 E318 68.4

5 1015 Williams 1997-10-05 E319 51.9

 stud.id stud.name stud.dob stud.course stud.cpa stud.class

1 1011 John 1998-02-05 IC320 70.9 First Class

2 1012 Mary 1998-11-11 IC311 44.7 Third Class

3 1013 Peter 1997-12-26 E565 83.4 First Class

4 1014 Janet 1996-09-24 E318 68.4 Merit

5 1015 Williams 1997-10-05 E319 51.9 Second Class

Activity

 This activity follows from the previous one.

 The Height column was missed in the previous data frame and is as

follows:

Height
175
155
182
167
165

 Add this information column-wise to the previous one.

 Display this new data frame.

 How many rows and columns does the new data frame have?

 Investigate on how can the above information be obtained by using

dim().

 Save the above script as Activity 2_5_5_3

With respect to rows, it is imperative that the new rows follow the same structure as in the

existing data frame. The rbind() function is then used to add the new rows permanently to the

data frame. The following code listing first creates a data frame stud.newdata with new rows

and then binds these rows to the above data frame stud using the rbind() function to create the

final data frame stud.final.

Unit 2 – R Fundamentals

35

Example
print the existing data frame

cat("The existing data frame \n")

print(stud)

Create the second data frame

stud.newdata <- data.frame(

 stud.id = c (1016:1018),

 stud.name = c("Anderson","Christine","Jordan"),

 stud.dob = as.Date(c("1998-05-25","1996-08-13","1997-12-10")),

 stud.course = c("IC320M","IC311","IC320"),

 stud.cpa = c(55.7,65.4,33.8),

 stud.class=c("Second Class","Merit","Fail")

)

print the new data frame

cat("The new data frame \n")

print(stud.newdata)

Bind the two data frames

stud.final <- rbind(stud,stud.newdata)

cat("The final data frame \n")

print(stud.final)

The above code produces the following output.

Program Output
The existing data frame

 stud.id stud.name stud.dob stud.course stud.cpa stud.class

1 1011 John 1998-02-05 IC320 70.9 First Class

2 1012 Mary 1998-11-11 IC311 44.7 Third Class

3 1013 Peter 1997-12-26 E565 83.4 First Class

4 1014 Janet 1996-09-24 E318 68.4 Merit

5 1015 Williams 1997-10-05 E319 51.9 Second Class

The new data frame

 stud.id stud.name stud.dob stud.course stud.cpa stud.class

1 1016 Anderson 1998-05-25 IC320M 55.7 Second Class

2 1017 Christine 1996-08-13 IC311 65.4 Merit

3 1018 Jordan 1997-12-10 IC320 33.8 Fail

The final data frame

 stud.id stud.name stud.dob stud.course stud.cpa stud.class

1 1011 John 1998-02-05 IC320 70.9 First Class

2 1012 Mary 1998-11-11 IC311 44.7 Third Class

3 1013 Peter 1997-12-26 E565 83.4 First Class

4 1014 Janet 1996-09-24 E318 68.4 Merit

5 1015 Williams 1997-10-05 E319 51.9 Second Class

6 1016 Anderson 1998-05-25 IC320M 55.7 Second Class

7 1017 Christine 1996-08-13 IC311 65.4 Merit

8 1018 Jordan 1997-12-10 IC320 33.8 Fail

Unit 2 – R Fundamentals

36

Activity

 This activity follows from the previous one.

 Create another data frame with the following information:

 Name Age Weight Sex Height
1 Micheal 22 82 M 185
2 Janet 17 44 F 169
3 Samy 33 52 F 157

 Add this data frame to the previous data frame and display the updated

data frame.

 Create a data frame of only the rows 2, 5, 7 and 8 and with only the

columns Name, Sex, Height.

 The Height of Kate has been wrongly inserted. It should have been 170.

Change it in the new data frame

 Display the new data frame to see the changed record.

 Save the updated script as Activity 2_5_5_3

2.5.6. Lists

In R, lists are considered as the most complex of the data types. Basically, a list is an ordered

collection of objects which can therefore contain different data types such as numbers, strings,

vectors, matrices, arrays, another list inside it etc... Figure 2.10 gives an illustration of a list.

Figure 2.10 – Lists

A list can be created using the list() function and its general syntax is as follows:

Syntax
mylist <- list(object1, object2, …)

 col1, col2, col3, … are column vectors of any type (such as character,

numeric, or logical)

 Names for each column can be provided with the names function.

E.g. mylist <- list(name1=object1, name2=object2, …)

The following listing shows a basic example of list creation.

Example
Create a vector of strings

list.str = c(“Red”, “Green”, “Blue”)

Create a vector of numbers

list.num = c(12, 15, 19, 21, 11)

Unit 2 – R Fundamentals

37

Assign a logical value to a variable

list.log = TRUE

Create a matrix of sequential numbers

list.mat = matrix(1:8, nrow=4)

Create a list containing strings, numbers, a logical values and a matrix

list_data <- list(list.str, list.num, list.log, list.mat)

print(list_data)

The above code produces the following output.

Program Output
[[1]]

[1] “Red” “Green” “Blue”

[[2]]

[1] 12 15 19 21 11

[[3]]

[1] TRUE

[[4]]

 [,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

2.5.6.1. List Creation with Named Objects

As mentioned previously, names can be assigned to objects by using the names() function. The

following example shows firstly, the naming of objects to the already created list1_data, and

secondly, the creation of list2_data with named objects.

Example
Give names to the elements in the list.

names(list1_data) <- c("Colours vector", "Numbers vector", "Logical value",

"Numbers matrix")

cat("List1 \n")

print(list1_data)

List title

list2.title = "My named list"

Create a vector of strings

list2.str = c("Yellow", "Purple", "Cyan")

Create a vector of numbers

list2.num = c(22, -2, 0, 77, 29)

Assign a logical value to a variable

list2.log = FALSE

Create a matrix of sequential numbers

list2.mat = matrix(1:10, nrow=5)

Create a list with names assigned to the objects

Unit 2 – R Fundamentals

38

list2_data <- list(title=list2.title, colours=list2.str,

numbers=list2.num, logical=list2.log, matrix=list2.mat)

cat("List2 \n")

print(list2_data)

The above code produces the following output.

Program Output
List1

$`Colours vector`

[1] "Red" "Green" "Blue"

$`Numbers vector`

[1] 12 15 19 21 11

$`Logical value`

[1] TRUE

$`Numbers matrix`

 [,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

List2

$title

[1] "My named list"

$colours

[1] "Yellow" "Purple" "Cyan"

$numbers

[1] 22 -2 0 77 29

$logical

[1] FALSE

$matrix

 [,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

2.5.6.2. Accessing List Elements

Similar to vectors and matrices, the elements of a list can be accessed by their indexes. If a

list has named objects, these names can also be used to access the elements.

The following example first creates list3_data. Then, the elements of list3_data are accessed

by using both indexes and names.

Unit 2 – R Fundamentals

39

Example
Create a list containing a vector, a matrix and a list.

list3_data <- list(c("Mon","Tues","Wed", "Thurs"), matrix(c(4,7,-2,-

5,0,8), nrow = 2), list("Fri",22.5))

Give names to the elements in the list.

names(list3_data) <- c("Days", "Values", "Nested List")

cat ("List 3 \n")

print(list3_data)

Access the first element of the list

cat ("Assessing list element 1 \n")

print(list3_data[1])

Access the third element which is also a list

cat ("Assessing list element 3 \n")

print(list3_data[3])

Access the list second element by using its name (Values)

cat ("Assessing element named 'Values' \n")

print(list3_data$Values)

The above code produces the following output.

Program Output
List 3

$Days

[1] "Mon" "Tues" "Wed" "Thurs"

$Values

 [,1] [,2] [,3]

[1,] 4 -2 0

[2,] 7 -5 8

$`Nested List`

$`Nested List`[[1]]

[1] "Fri"

$`Nested List`[[2]]

[1] 22.5

Assessing list element 1

$Days

[1] "Mon" "Tues" "Wed" "Thurs"

Assessing list element 3

$`Nested List`

$`Nested List`[[1]]

[1] "Fri"

$`Nested List`[[2]]

[1] 22.5

Assessing element named 'Values'

 [,1] [,2] [,3]

[1,] 4 -2 0

[2,] 7 -5 8

Unit 2 – R Fundamentals

40

2.5.6.3. Manipulating the Elements of a List

The elements of a list can be added, updated or deleted. While we can only add or delete

elements found at the end of a list, any element at any index can be updated. The

following code listing shows the manipulations, including addition, deletion and update,

being carried out on list3_data.

Example
Printing List 3

cat ("List 3 \n")

print(list3_data)

cat ("List 3 Manipulations \n")

Add a new element at the end of the list

list3_data[4] <- "New added element"

print(list3_data[4])

Remove the last element

list3_data[4] <- NULL

Print the 4th Element

print(list3_data[4])

Update the 3rd Element

list3_data[3] <- "Updated element"

print(list3_data[3])

The above code produces the following output.

Program Output
List 3

$Days

[1] "Mon" "Tues" "Wed" "Thurs"

$Values

 [,1] [,2] [,3]

[1,] 4 -2 0

[2,] 7 -5 8

$`Nested List`

$`Nested List`[[1]]

[1] "Fri"

$`Nested List`[[2]]

[1] 22.5

List 3 Manipulations

[[1]]

[1] "New added element"

$<NA>

NULL

$`Nested List`

[1] "Updated element"

Unit 2 – R Fundamentals

41

Activity

 Create a list Date such that it contains the following information. You

may consider creating 3 appropriate vectors.

$year
 [1] 81 82 83 84 85 86 87 88 89 90

$month
 [1] 1 2 3 4 5 6 7 8 9 10 11 12

$day
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[31] 31

 Replace the values of year element in Date list with the years 00 till 10

(2000 – 2010)

 Delete the value 2 of the month component of the list Date.

 Save the updated script as Activity 2_5_6_3

2.5.7. Other R Objects

2.5.7.1. Factors and Tables

Factors are vector objects and are used to classify the data and store it as levels. They are very

useful in columns with a limited number of values, e.g. male, female and true, false. Factors

are very useful in statistical analysis and modelling. Factors are created using the factor()

function with a vector as input. A number of insights can be obtained if the factors are tabulated

or if their frequencies are obtained. In R, this can be achieved by using the table() function.

The following example shows the use of the factor(), is.factor() and table() functions.

Example
Create a vector as input

gender <- c("male", "female", "male", "male", "male", "female", "male")

print(gender)

print(is.factor(gender))

Factoring the vector gender

factored.gender = factor(gender)

print(factored.gender)

print(is.factor(factored.gender))

Get the frequencies of the factors using table

table(factored.gender)

The above code produces the following output.

Program Output
[1] "male" "female" "male" "male" "male" "female" "male"

[1] FALSE

[1] male female male male male female male

Levels: female male

[1] TRUE

Unit 2 – R Fundamentals

42

factored.gender

female male

 2 5

2.5.7.2. Factors in Data Frame

If a data frame is made up of columns of text data, R treats the text columns as categorical data

and automatically creates factors on them. The following code listing shows how R

automatically factors text columns.

Example
Create the vectors for data frame

age <- c(18,22,21,19,18)

gender <- c("male","female","female","female","male")

course <- c("IC320","IC320","IC311","IC311","IC320")

Create the data frame

stud <- data.frame(age,gender,course)

print(stud)

Test if the age column is a factor

print(is.factor(stud$age))

Test if the gender column is a factor

print(is.factor(stud$gender))

Print the gender column so see the levels

print(stud$gender)

Get the gender frequencies

table(stud$gender)

Test if the course column is a factor

print(is.factor(stud$course))

Print the course column so see the levels

print(stud$course)

Get the course frequencies

table(stud$course)

The above code produces the following output.

Program Output
 age gender course

1 18 male IC320

2 22 female IC320

3 21 female IC311

4 19 female IC311

5 18 male IC320

[1] FALSE

[1] TRUE

[1] male female female female male

Levels: female male

Unit 2 – R Fundamentals

43

female male

 3 2

[1] TRUE

[1] IC320 IC320 IC311 IC311 IC320

Levels: IC311 IC320

IC311 IC320

 2 3

2.6. Control Structures

In programming languages, control structures allows a programmer to control the flow of

execution of a program which is a series of instructions. Basically, these control structures

allow the programmer to put some logic into the code. Table 2.4 highlights the 2 main types of

control structures: decisions and loops, with each one of them having a number of constructs.

Control Structures Statement Description

Decisions if Tests a condition and acts upon it

if...else The optional else statement are executed when the

Boolean expression is false

if...else if...else Tests various conditions and act upon them accordingly

Loops while Executes a set of instructions as long as a condition is true

repeat Executes a loop until the break statement terminates it

for Executes a set of instructions a fixed number of times
Table 2.4 – Control Structures

While most of these control structures are used writing functions it is imperative to understand

them before actually seeing them in functions.

2.6.1. if statement

Like in most programming languages, the if control structure is probably the most commonly

used in R. This control structure tests a specific condition and acts upon it depending on

whether the condition is true or false. Figure 2.11 gives an illustration of the if control structure.

Unit 2 – R Fundamentals

44

Figure 2.11 – if control structure

In R, the basic syntax for creating an if control structure is:

Syntax
if(boolean_expression) {

 // statement(s) to be executed if the expression is true.

}

The following example shows the use of the if control structure. The Boolean condition being

tested in this example is whether x is greater than 10. Since the variable x has been assigned

the value 15, therefore the Boolean condition evaluates to true, and consequently, x is

greater than 10 is displayed.

Example
x = 15

if (x > 10) {

 print("x is greater than 10")

}

The above code produces the following output.

Program Output
[1] "x is greater than 10"

2.6.2. The if...else and the if...else if...else Statement

Variations of the if control structure exists in most programming languages. An if statement

can be followed by:

Unit 2 – R Fundamentals

45

• An optional else statement which will be executed when the Boolean expression

evaluates to false.

• An optional else if...else statement which is used in situations which require testing of

various conditions.

Programmers should be aware of the following important notes when using if, else if, else

statements:

• An if may have zero or one else but it must come after all the else ifs.

• Similarly, An if may have zero or many else ifs and they must come before the else.

• If an else if succeeds, the remaining else ifs or else will NOT be tested.

The basic syntax for creating an if...else and the if...else if...else control structures are as

follows:

Syntax
 if...else control structure

if(boolean_expression) {

 // statement(s) to be executed if the expression is true

} else {

 // statement(s) to be executed if the expression is false

}

 if...else if...else control structure

if(boolean_expression 1) {

 // Executes if the boolean expression 1 is true

} else if(boolean_expression 2) {

 // Executes if the boolean expression 2 is true

} else if(boolean_expression 3) {

 // Executes if the boolean expression 3 is true

} else {

 // executes when none of the above condition is true

}

The following listing first shows the use of the if...else control structure. The sample() function

is used to generate a random integer number. E.g. sample(1:10, 1) has as first argument a

vector of valid numbers (1 to 10), and as second argument, 1 which indicates that one number

should be returned. The generated value is then compared to 5 and a corresponding message is

displayed accordingly. Similarly, the example also shows the use of the if...else if...else control

structure.

Example
cat("An if-else example \n")

generate one random number between 1 and 10

x <- sample(1:10, 1)

print the random number

print (x)

if-else control structure

if (x >= 5) {

Unit 2 – R Fundamentals

46

 print("x is greater than or equal to 5")

} else {

 print("x is less than 5")

}

cat("\n An if...else if...else example \n")

generate one random number between 1 and 12

y <- sample(1:12, 1)

print the random number

print (y)

if-else control structure

if (y >= 9) {

 print("y is greater than or equal to 9")

} else if (y >= 6) {

 print("y is greater than or equal to 6 but less than 9")

} else if (y >= 3) {

 print("y is greater than or equal to 3 but less than 6")

}else {

 print("y is less than 3")

}

The above code produces the following output. This is a sample output and will depend on the

random value generated.

Program Output
An if-else example

[1] 5

[1] "x is greater than or equal to 5"

 An if...else if...else example

[1] 8

[1] "y is greater than or equal to 6 but less than 9"

Activity

 What is the output y in the following:

z=5

if(z<0) y=z*3 else y=z*5

 What is the output n in the following:

z='i'

if (z=='a') n=1 else

if (z=='e') n=2 else

if (z=='i') n=3 else

if (z=='o') n=4 else n=5

 Save the script as Activity 2_6_2

Unit 2 – R Fundamentals

47

2.6.3. Loops

There may be situations where a group of statements have to be executed a number of times.

Like other programming languages, R provides the following loop constructs:

1. The While Loop - Repeats a statement or a number of statements as long as a condition

is true.

2. Repeat loop – Executes a statement or a group of statements a number times and uses

the break statement to terminate the loop.

3. For loop – A counter-controlled loop which repeats a statement or a block of statements

a number of times.

Note: With any type of loop, care has to be taken to avoid infinite loops which are loops that

run forever.

2.6.3.1. The While Loop

The While loop is a pre-test loop and therefore tests the condition before executing the body of

the loop. Figure 2.12 gives an illustration of the While loop.

Figure 2.12 – The While Loop

The basic syntax for a While loop is given below.

Syntax
While (condition) {

 Statements …

}

Unit 2 – R Fundamentals

48

In the following example, a loop control variable, counter, has been initialised to one. The

While loop condition tests whether the value of counter is less than or equal to 5. As long as

this condition is true, the statements found inside the loop are iterated. Hence after the fifth

execution, the counter variable has value 6 and is hence not less than or equal to 5.

Consequently the loop terminates and the program executes the statements found after the loop.

Example
Initialise a loop control variable, counter, to 1

counter <- 1

While count variable is less than or equal to 5, loop

while (counter <= 5) {

 cat("This line is being executed", counter, "time(s). \n")

 # Increment counter variable by 1

 counter = counter + 1

}

cat("This is the end of the loop. \n")

cat("Loop control variable counter has value:", counter)

The above code produces the following output.

Program Output
This line is being executed 1 time(s).

This line is being executed 2 time(s).

This line is being executed 3 time(s).

This line is being executed 4 time(s).

This line is being executed 5 time(s).

This is the end of the loop.

Loop control variable counter has value: 6

Note: In the above example, if counter is not incremented, i.e. remains with the value of 1, the

test condition (counter<=5) will remain true and this will lead to an infinite loop.

Activity

 Using a while loop starting with x = 0, display all the numbers up to 50

but skipping numbers 10, 25 and 35.

 Using a while loop, create a multiplication table of 4 with the first value

being 4 and the last one being 100.

 Use a while loop to investigate the value of n such that product of

1 x 2 x 3 x 4 x … x n

just crosses 1 million.

 Save the updated script as Activity 2_6_3_1

Unit 2 – R Fundamentals

49

2.6.3.2. The Repeat Loop

The Repeat Loop also executes a statement or a group of statements again and again until a

stop condition is met which uses the break statement to terminate the loop. Figure 2.13 gives

an illustration of the Repeat loop.

Figure 2.13 – The Repeat Loop

The general syntax for a Repeat loop is given below.

Syntax
repeat {

 statements…

 if(condition) {

 break

 }

}

In the following code listing, a counter variable is initialised to 10. A number of statements are

iterated a number of time until counter reaches 0. The loop then terminates and the statements

found after the loop are executed.

Example
Initialise a loop control variable, counter, to 10

counter <- 10

Repeat until counter is 0

repeat {

 cat(counter, "\n")

 # Decrement counter variable by 1

 counter = counter - 1

 # if counter is 0, terminate the loop

 if (counter==0){

Unit 2 – R Fundamentals

50

 break

 }

}

cat("This is the end of the loop. \n")

The above code produces the following output.

Program Output
10

9

8

7

6

5

4

3

2

1

This is the end of the loop.

Activity

 Using a repeat loop, print all the numbers ranging from 1 to 50.

 Using a repeat loop, print all the even numbers in the sequence 1 to 50.,

 Write a repeat loop that iterates over the numbers 1 to 10 and prints the

cube of each number.

 Save the updated script as Activity 2_6_3_2

2.6.3.3. The For Loop

In R, for loops take an iterator variable and assign it to successive values from a sequence or

vector. Unlike While and Repeat loops which repeat statement(s) based on conditions, for loops

are most commonly used for iterating over the elements of an object, list, vector etc… Figure

2.14 gives an illustration of the For loop.

Unit 2 – R Fundamentals

51

Figure 2.14 – The For Loop

The basic syntax for a For loop is given below.

Syntax
for (value in sequence) {

 statements

}

The following code listing consists of 3 examples of for loops. In the first example, the variable

i is successively assigned to the values in the sequence 1 to 10 and is displayed in the loop. In

the second example, 4 elements (letters) have been assigned to a vector myVector1. The loop

control variable j is then assigned the values in the sequence 1 to 4 and is then used an index

to retrieve the elements from the vector. The third example uses the built in constant LETTERS

which stores the 26 upper-case letters of the Roman alphabet.

Example
For Loop Example 1

cat("For Loop Example 1 \n")

variable i will be successively assigned to values in the sequence 1 to

10

for(i in 1:10) {

 print(i)

}

For Loop Example 2

Unit 2 – R Fundamentals

52

cat("For Loop Example 2 \n")

assign 4 elements to myVector1

myVector1 <- c("a", "b", "c", "d")

for(j in 1:4) {

 ## Print out each element of myVector1

 print(myVector1[j])

}

For Loop Example 3

cat("For Loop Example 3 \n")

myVector2 <- LETTERS[5:8]

for (k in myVector2) {

 print(k)

}

The above code produces the following output.

Program Output
For Loop Example 1

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

For Loop Example 2

[1] "a"

[1] "b"

[1] "c"

[1] "d"

For Loop Example 3

[1] "E"

[1] "F"

[1] "G"

[1] "H"

Activity

 Write a for() loop that prints all the letters in a vector containing the

following letters "q", "w", "e", "r", "z" and "c".

 Write a for() loop that prints the first five numbers of this vector: 7, 4, 3,

8, 9, 25, 10, 22 and 37

 Use a for() loop to re-implement the example in section 2.6.3.2 and

consequently displays the same output.

 Save the updated script as Activity 2_6_3_3

Unit 2 – R Fundamentals

53

2.7. Functions

A function is a group of statements that performs a specific task. Line in any other

programming language, R has a number of in-built functions and, at the same time, it also

allows the users to create their own functions, referred as user defined functions.

When there is a call to a function, the R interpreter passes control to the function together with

arguments, if any, for the function to perform its specific actions. Consequently, the function

performs its task and then returns the control, with the result if any, to the interpreter. The result

may then be stored in other objects for further manipulation.

2.7.1. In-Built Functions

An in-built function is one which is already pre-defined in the programming language and

which can be directly called in a program. Simple examples of in-built functions are seq(),

min(), max(), sum(), mean(),range(), round(), sqrt() etc...

The following code listing shows examples of the use of the above in-built functions.

Example
Create a sequence of numbers from 1 to 10.

print(seq(1,10))

Print the minimum of a set of numbers.

print(min(2,10,5,8,4,3,9,7,6))

Print the maximum of a set of numbers.

print(max(2,10,5,8,4,3,9,7,6))

Find sum of the numbers from 1 to 10.

print(sum(1:10))

Find mean of the numbers from 1 to 10.

print(mean(1:10))

Print the range of values of a vector.

x <- c(1,4,8,6,2)

print(range(x))

Print the square root of 8 and round it to 2 decimal places.

print(round(sqrt(8),2))

The above code produces the following output.

Program Output
[1] 1 2 3 4 5 6 7 8 9 10

[1] 2

[1] 10

[1] 55

[1] 5.5

Unit 2 – R Fundamentals

54

[1] 1 8

[1] 2.83

2.7.2. User-Defined Functions

Programmers can also create their own functions. Once these have been created, they can be

used in the same way as built-in functions. The basic syntax for creating a Function is given

below.

Syntax
function_name <- function(arg_1, arg_2, ...) {

 statement(s)

}

2.7.2.1. Function Components

The different components of a function are as follows:

 Function Name: the actual name of the function

 Argument(s): The optional input(s) to a function

 Function Body: A set of statements that defines what the function does.

 Return Value: The optional result returned to the caller as the effect of calling the

function.

2.7.2.2. User Defined Functions with no Argument

The inputs to a function are optional, i.e. a function may or may not have arguments. The

following code listing gives 2 examples of how user defined functions, with no arguments, are

created and used.

Example
Creating a function Welcome which prints a statement

welcome <- function() {

 cat("Programming with functions is challenging!\n")

}

Calling the function welcome without supplying any argument

welcome()

Creating a square function without an argument

square <- function() {

 for(i in 1:5) {

 print(i^2)

 }

}

Call the square function

square()

The above code produces the following output.

Unit 2 – R Fundamentals

55

Program Output
Programming with functions is challenging!

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

2.7.2.3. User Defined Functions with Arguments

A function may accept arguments. As mentioned earlier, an argument is an input that is

supplied to and used by the function. While an argument is the actual value that is passed to a

function, a parameter is a variable in a method definition. Therefore, when a function is called,

the arguments are the data being passed into the method's parameters.

The following code listing gives 2 examples of how user defined functions, with arguments,

are created and used. In the first example, the function accepts an argument which is a

temperature in Celsius and calculates and displays its equivalent in Fahrenheit. Here, temp_C

is the parameter while 25 is the argument. The second example shows a function that calculates

the square of the numbers 1 till the number supplied as argument.

Example
Creating a function with arguments

CelsiusToFahrenheit <- function(temp_C) {

 temp_F = temp_C * 9/5 + 32

 cat(temp_C, "in Celsius is", temp_F, "in Fahrenheit.\n")

}

Calling the function with argument 25

CelsiusToFahrenheit(25)

Creating a square function with an argument

square <- function(x) {

 for(i in 1:x)

 print(i^2)

}

Call the square function

square(4)

The above code produces the following output.

Program Output
25 in Celsius is 77 in Fahrenheit.

[1] 1

[1] 4

[1] 9

[1] 16

Unit 2 – R Fundamentals

56

2.7.2.4. Calling a Function with Argument Values (by position and by name)

The arguments in a function call can be supplied in the same sequence as defined in the function

or they can be supplied in a different sequence but assigned to the names of the arguments.

The following code listing shows a user defined functions with 4 arguments: a, b, c and d. In

the first function call, the arguments are supplied in sequence while in the second function call,

the arguments are supplied by using the appropriate names. The output shows that both lead to

the same result.

Example
Create a function with 4 arguments.

Calculate <- function(a,b,c,d) {

 result <- a * b + c * d

 print(result)

}

Call the function by position of arguments.

Calculate(2,5,4,3)

Call the function by names of the arguments.

Calculate(d=3,b=5,c=4,a=2)

The above code produces the following output.

Program Output
Programming with functions is challenging!

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

2.7.2.5. Functions with Return statement

Line most programming languages, functions in R can return only a single object. However,

this is not a limitation since a list containing several objects can also be returned. The keyword

return() is generally used to return objects or values in a function. However,

The following code listing shows a user defined functions with 3 arguments: num1, num2 and

num3. The function calculates the greatest of the 3 arguments and returns this result which is

then saved in a variable largerNum and then displayed.

Example
Create a function, greater, that calculates maximum of 3 numbers.

greater <- function(num1,num2,num3) {

 if (num1>num2 & num1>num3)

 largest = num1

 else if (num2>num1 & num2>num3)

 largest = num2

 else

 largest = num3

Unit 2 – R Fundamentals

57

 return (largest)

}

Call the greater function and save its result

largerNum = greater(5,9,7)

Print the result

print(largerNum)

The above code produces the following output.

Program Output
[1] 9

Note: In the absence of an explicit return() statement, the last expression evaluated in a

function becomes the return value, i.e. the result of invoking the function.

Activity

 Create a function that returns the difference between two numbers. The

function should subtract the smaller number from the bigger one.

 Create a function that given an alpha numeric vector, it keeps only the

numbers. For example, if the input is a vector w="b", "d", "8", "5", "q" ,

the function will return w= “8”, “5”.

 Create a function returns the grade of a student given his mark. The

grading scheme is given in the table below:

Mark Award

Mark >= 80 A

Mark >= 60 & < 80 B

Mark >= 40 & < 60 C

Mark < 40 D

 Write appropriate calls to test the above functions.

 Save your script as Activity 2_7

Unit Summary

Summary

In this unit you learned the fundamentals of the R programming language.

You have used the Console window and the Script Editor to write your

codes. The unit provides an overview of the arithmetic, relational and

logical operators. You became familiar with the major R data structures

and also worked with the two main control structures: decisions and loops.

Finally the unit ends with built-in and user-defined functions.

Unit 2 – R Fundamentals

58

References

1. Kabacoff, R.I., 2010. R in Action. Manning.

2. Grolemund, G. and Wickham, H., 2017. R for Data Sience. O’Reilly, January 2017

First Edition

3. Peng, R.D., 2015. R programming for data science. Lulu. com.

4. Venables, W. N., Smith D. M. and the R Core Team, 2017. An Introduction to R - Notes

on R: A Programming Environment for Data Analysis and Graphics. [ONLINE]

Available at: https://cran.r-project.org/doc/manuals/R-intro.html [Accessed 30 April

2018]

5. Tutorialspoint. 2018. R Tutorial. [ONLINE] Available at:

https://www.tutorialspoint.com/r/index.htm. [Accessed 31 March 2018].

6. R Exercises. 2018. Homepage. [ONLINE] Available at: https://www.r-exercises.com/.

[Accessed 30 April 2018].

Further Reading

1. Zumel, N., Mount, J. and Porzak, J., 2014. Practical data science with R (pp. 101-104).

Manning.

2. Matloff, N., 2011. The art of R programming: A tour of statistical software design. No

Starch Press.

3. Teetor, P., 2011. R Cookbook: Proven recipes for data analysis, statistics, and

graphics. "O'Reilly Media, Inc.".

4. R Exercises. 2018. Homepage. [ONLINE] Available at: https://www.r-exercises.com/.

[Accessed 30 April 2018].

5. Edureka, 2017. R Tutorial For Beginners. [Online video] Available at:

https://www.youtube.com/watch?v=eDrhZb2onWY [Accessed 30 April 2018].].

https://cran.r-project.org/doc/manuals/R-intro.html
https://www.r-exercises.com/
https://www.r-exercises.com/
https://www.youtube.com/watch?v=eDrhZb2onWY

