10. Students

10.3. Student Differences with Respect to Learning with Technologies

It may seem obvious that different students will have different preferences for different kinds of technology or media. The design of teaching would cater for these differences. Thus if students are ‘visual’ learners, they would be provided with diagrams and illustrations. If they are auditory learners, they will prefer lectures and podcasts. It might appear then that identifying dominant learning styles should then provide strong criteria for media and technology selection. However, it is not as simple as that.

McLoughlin (1999), in a thoughtful review of the implications of the research literature on learning styles for the design of instructional material concluded that instruction could be designed to accommodate differences in both cognitive-perceptual learning styles and Kolb’s (1984) experiential learning cycle. In a study of new intakes conducted over several years at the University of Missouri-Columbia, using the Myers-Briggs inventory, Schroeder (1993) found that new students think concretely, and are uncomfortable with abstract ideas and ambiguity.

However, a major function of a university education is to develop skills of abstract thinking and to help students deal with complexity and uncertainty. Perry (1970) found that learning in higher education is a developmental process. It is not surprising then that many students enter college or university without such ‘academic’ skills. Indeed, there are major problems in trying to apply learning styles and other methods of classifying learner differences to media and technology selection and use. Laurillard (2001) makes the point that looking at learning styles in the abstract is not helpful. Learning has to be looked at in context. Thinking skills in one subject area do not necessarily transfer well to another subject area. There are ways of thinking that are specific to different subject areas. Thus logical-rational thinkers in science do not necessarily make thoughtful husbands or good literary critics.

Part of university education is to understand and possibly challenge predominant modes of thinking in a subject area. While learner-centered teaching is important, students need to understand the inherent logic, standards, and values of a subject area. They also need to be challenged and encouraged to think outside the box. In particular, at a university level, we need strategies to gradually move students from concrete learning based on personal experience to abstract, reflective learning that can then be applied to new contexts and situations.

Thus when designing courses, it is important to offer a range of options for student learning within the same course. One way to do this is to make sure that a course is well structured, with relevant ‘core’ information easily available to all students, but also to make sure that there are opportunities for students to seek out new or different content. This content should be available in a variety of media such as text, diagrams, and video, with concrete examples explicitly related to underlying principles. The increasing availability of open educational resources makes the provision of this ‘richness’ of possible content much more viable.

Similarly, technology enables a range of learner activities to be made available, such as researching readings on the Web, online discussion forums, synchronous presentations, assessment through e-portfolios, and online group work. The range of activities increases the likelihood that a variety of learner preferences are being met, and also encourages learners to involve themselves in activities and approaches to learning where they may initially feel less comfortable. Thus it is important to ensure that students have a wide range of media (text, audio, video, computing) within a course or program.

Lastly, one should be careful in the assumptions made about student preferences for learning through digital technologies. On the one hand, technology ‘boosters’ such as Mark Prensky (2001) and Don Tapscott (2008) have argued that today’s ‘digital natives’ are different from previous generations of students. They argue that today’s students live within a networked digital universe and therefore expect their learning also to be all digitally networked. It is also true that professors, in particular, tend to underestimate students’ access to advanced technologies (professors are often late adopters of new technology), so you should always try to find up-to-date information on what devices and technologies students are currently using it, if you can.

On the other hand, it is also dangerous to assume that all students are highly ‘digital literate’ and are demanding that new technologies should be used in teaching. Jones and Shao (2011) conducted a thorough review of the literature on ‘digital natives’, with over 200 appropriate references, including surveys of relevant publications from countries in Europe, Asia, North America, Australia and South Africa. They concluded that:

  • Students vary widely in their use and knowledge of digital media.
  • The gap between students and their teachers in terms of digital literacy is not fixed, nor is the gulf so large that it cannot be bridged.
  • There is little evidence that students enter university with demands for new technologies that teachers and universities cannot meet.
  • Students will respond positively to changes in teaching and learning strategies that include the use of new technologies that are well-conceived, well explained and properly embedded in courses and degree programmes. However, there is no evidence of a pent-up demand amongst students for changes in pedagogy or of a demand for greater collaboration.
  • The development of university infrastructure, technology policies, and teaching objectives should be choices about the kinds of provision that the university wishes to make and not a response to general statements about what a new generation of students is demanding.
  • The evidence indicates that young students do not form a generational cohort and they do not express consistent or generationally organized demands, thus challenging general assumptions about the differences between post-millennials, millennials, generation x, and boomers in the way that they learn.

Graduating students that have been interviewed about learning technologies at the University of British Columbia made it clear that they will be happy to use technology for learning so long as it contributes to their success (in the words of one student, ‘if it will get me better grades’) but the students also made it clear that it was the instructor’s responsibility to decide what technology was best for their studies.

It is also important to pay attention to what Jones and Shao are not saying. They are not saying that social media, personal learning environments, or collaborative learning are inappropriate, nor that the needs of students and the workforce are unchanging or unimportant, but the use of these tools or approaches should be driven by a holistic look at the needs of all students, the needs of the subject area, and the learning goals relevant to a digital age, and not by an erroneous view of what a particular generation of students are demanding.

In summary, one great advantage of the intelligent application of technology to teaching is that it provides opportunities for students to learn in a variety of ways, thus adapting the teaching more easily to student differences. Thus, the first step in media selection is to know your students, their similarities and differences, what technologies they already have access to, and what digital skills they already possess or lack that may be relevant for your courses. This is likely to require the use of a wide range of media within the teaching to accommodate these differences.