4. Emerging Technologies: Artificial Intelligence
4.6. Some Perspectives
Dream On, AI Enthusiasts
In terms of what AI is actually doing now for teaching and learning, the dream is way beyond the reality. What works well in finance or marketing or astronomy does not necessarily translate to teaching and learning contexts. In doing the research for this section, it proved very difficult to find any compelling examples of AI for teaching and learning, compared with serious games or virtual reality. It is always hard to prove a negative, but the results to date of applying AI to teaching and learning are extremely limited and disappointing.
This is mainly due to the difficulty of applying ‘modern’ AI at scale in a very fragmented system that relies heavily on relatively small class sizes, programs, and institutions. Probably for modern AI to ‘work’, a totally different organizational structure for teaching and learning would be needed. But be careful what you wish for.
There is a strong affective or emotional influence in learning. Students often learn better when they feel that the instructor or teacher cares. In particular, students want to be treated as individuals, with their own interests, ways of learning, and some sense of control over their learning. Although at a mass level human behaviour is predictable and to some extent controllable, each student is an individual and will respond slightly differently from other students in the same context. Because of these emotional and personal aspects of learning, students need to relate in some way to their teacher or instructor. Learning is a complex activity where only a relatively minor part of the process can be effectively automated. Learning is an intensely human activity, that benefits enormously from personal relationships and social interaction. This relational aspect of learning can be handled equally well online as face-to-face, but it means using computing to support communication as well as delivering and testing content acquisition.
Not Fit for Purpose
Above all, AI has not progressed to the point yet where it can support the higher levels of learning required in a digital age or the teaching methods needed to do this, although other forms of computing or technology, such as simulations, games and virtual reality, can.
In particular, AI developers have been largely unaware that learning is developmental and constructed, and instead have imposed an old and less appropriate method of teaching based on behaviorism and an objectivist epistemology. However, to develop the skills and knowledge needed in a digital age, a more constructivist approach to learning is needed. There has been no evidence to date that AI can support such an approach to teaching, although it may be possible.
AI's Real Agenda
AI advocates often argue that they are not trying to replace teachers but to make their life easier or more efficient. This should be taken with a pinch of salt. The key driver of AI applications is cost reduction, which means reducing the number of teachers, as this is the main cost in education. In contrast, the key lesson from all AI developments is that we will need to pay increased attention to the affective and emotional aspects of life in a robotic-heavy society, so teachers will become even more important.
Another problem with artificial intelligence is that the same old hype keeps going round and round. The same arguments for using artificial intelligence in education go back to the 1980s. Millions of dollars went into AI research at the time, including into educational applications, with absolutely no payoff.
There have been some significant developments in AI since then, in particular pattern recognition, access to and analysis of big data sets, powerful algorithms, leading to formalized decision-making within limited boundaries. The trick though is to recognize exactly what kind of applications these new AI developments are good for, and what they cannot do well. In other words, the context in which AI is used matters, and needs to be taken account of. Teaching and learning is a particularly difficult environment then for AI applications.
Defining AI's Role in Teaching and Learning
Nevertheless, there is plenty of scope for useful applications of AI in education, but only if there is continuing dialogue between AI developers and educators as new developments in AI become available. But that will require being very clear about the purpose of AI applications in education and being wide awake to the unintended consequences.
In education, AI is still a sleeping giant. ‘Breakthrough’ applications of AI for teaching and learning are probably not going to come from the mainstream universities and colleges, but from outside the formal post-secondary system, through organizations such as LinkedIn, lynda.com, Amazon or Coursera, that have access to large data sets that make the applications of AI scalable and worthwhile (to them). However, this would pose an existential threat to public schools, colleges and universities. The issue then becomes: what system is best to protect and sustain the individual in a digital age: multinational corporations using AI for teaching and learning; or a public education system with human teachers using AI as support for learners?
The key question then is whether technology should aim to replace teachers and instructors through automation, or whether technology should be used to empower not only teachers but also learners. Above all, who should control AI in education: educators, students, computer scientists, or large corporations? These are indeed existential questions if AI does become immensely successful in reducing the costs of teaching and learning: but at what cost to us as humans? Fortunately, AI is not yet in a position to provide such a threat, but it may well do so soon.