3. Emerging Technologies: Virtual and Augmented Reality

3.3. Examples of Immersive Environments In Education

Looking at the challenges above, it may be wondered why anyone would bother with immersive technologies in education. However, the potential benefits have barely been explored. I provide examples here that demonstrate both the potential benefits and how some immersive environments can be developed relatively easily. (For a more systematic review of VR applications in higher or post-secondary education, see Radianti et al., 2020)

Virtual Reality

In the Department of Chemistry at the University of Bristol in England, Dr. David Glowacki and his team in their VR laboratory created an interactive molecular dynamics modelling tool in the form of Nano Simbox VR, which allowed anyone to visit and play within the invisible molecular world (O’Connor et al., 2018). The main aim of this particular project was to provide an intuitive feeling of the way molecules operate in multiple dimensions to enable researchers and students to have a better understanding of how nano worlds operate, leading to better hypotheses for testing within this particular domain.

As the authors state in the article:

From a modeling perspective, the nanoscale represents an interesting domain, because the objects of study (for example, molecules) are invisible to the naked eye, and their behavior is governed by physical forces and interactions significantly different from those forces and interactions that we encounter during our day-to-day phenomenological experience. In domains like this, which are imperceptible to the naked eye, effective models are vital to provide the insight required to make research progress…. molecular systems typically have thousands of degrees of freedom. As a result, their motion is characterized by a complicated, highly correlated, and elegant many-body dynamical choreography, which is nonintuitive compared to the more familiar mechanics of objects that we encounter in the everyday physical world. Their combined complexity, unfamiliarity, and importance make molecules particularly interesting candidates for investigating the potential of new digital modeling paradigms.

Glowacki and his team in Science Advances (O’Connor et al., 2018) describe how the VR app enabled researchers to:

  • Easily “grab” individual C60 atoms and manipulate their real-time dynamics to pass the C60 back and forth between each other
  • Take hold of a fully solvated benzylpenicillin ligand and interactively guide it to dock it within the active site of the TEM-1 β-lactamase enzyme (with both molecules fully flexible and dynamic) and generate the correct binding mode (33), a process that is important to understanding antimicrobial resistance
  • Guide a methane molecule (CH4) through a carbon nanotube, changing the screw sense of an organic helicene molecule
  • Tie a knot in a small polypeptide [17-alanine (17-ALA)


Building dynamic models that operate not only in real-time but also in three dimensions can require not only specialized virtual reality equipment but more importantly massive amounts of computing power to handle the visual representation and modeling of highly complex, interactive dynamic molecular processes. However, through the use of cloud computing and faster networks, building such models has now become a reality, enabling not only such models to be represented but allowing some degree of real-time manipulation by researchers in different locations but within the same time-frame. The main advantage of the use of a cloud platform is to allow the scaling up of modeling from simple to much more complex dynamic nano interactions and the synchronous sharing of the virtual reality experience with multiple users. 

Not all applications of VR though need massive computing power. Other exploratory uses of virtual reality are

Augmented Reality

Augmented reality is a simpler immersive technology than virtual reality, often based on apps for mobile phones. For instance, students in the University of British Columbia’s APBI 200 Introduction to Soil Science learn about the effects of topography on the formation of different soil types. The department has developed the Soil TopARgraphy app, which allows viewing and manipulating a terrain model in the Kamloops region of British Columbia. Students learn how topography impacts the distribution of soil orders through its effects on microclimate (i.e. temperature and water). Students are able to view the terrain model with a color-coded elevation map or a satellite image on their mobile phones. Furthermore, students can tap on flags to read about different soil orders, view images, and take a self-study quiz to reinforce their understanding.

For this project, UBC’s Emerging Media Lab built two mobile apps, an AR viewer for students (Android and iOS) and an editor for the instructor (Android). The AR viewer is the app described above to view a predefined terrain. The instructor can customize content with the supplementary editor app. They can update soil location on terrain, description, image, and quizzes.

Figure 7: Screen images from Soil TopARgraphy

Other examples of AR applications from UBC: